• Title/Summary/Keyword: Wind prediction

Search Result 942, Processing Time 0.031 seconds

An overview of applicability of WEQ, RWEQ, and WEPS models for prediction of wind erosion in lands

  • Seo, Il Whan;Lim, Chul Soon;Yang, Jae Eui;Lee, Sang Pil;Lee, Dong Sung;Jung, Hyun Gyu;Lee, Kyo Suk;Chung, Doug Young
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.2
    • /
    • pp.381-394
    • /
    • 2020
  • Accelerated soil wind erosion still remains to date to cause severe economic and environmental impacts. Revised and updated models to quantitatively evaluate wind induced soil erosion have been made for specific factors in the wind erosion equation (WEQ) framework. Because of increasing quantities of accumulated data, the WEQ, the revised wind erosion equation (RWEQ), the wind erosion prediction system (WEPS), and other soil wind erosion models have been established. These soil wind erosion models provide essential knowledge about where and when wind erosion occurs although naturally, they are less accurate than the field-scale. The WEQ was a good empirical model for comparing the effects of various management practices on potential erosion before the RWEQ and the WEPS showed more realistic estimates of erosion using easily measured local soil and climatic variables as inputs. The significant relationship between the observed and predicted transport capacity and soil loss makes the RWEQ a suitable tool for a large scale prediction of the wind erosion potential. WEPS developed to replace the empirical WEQ can calculate soil loss on a daily basis, provide capability to handle nonuniform areas, and obtain predictions for specific areas of interest. However, the challenge of precisely estimating wind erosion at a specific regional scale still remains to date.

Evolutionary Nonlinear Regression Based Compensation Technique for Short-range Prediction of Wind Speed using Automatic Weather Station (AWS 지점별 기상데이타를 이용한 진화적 회귀분석 기반의 단기 풍속 예보 보정 기법)

  • Hyeon, Byeongyong;Lee, Yonghee;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.107-112
    • /
    • 2015
  • This paper introduces an evolutionary nonlinear regression based compensation technique for the short-range prediction of wind speed using AWS(Automatic Weather Station) data. Development of an efficient MOS(Model Output Statistics) is necessary to correct systematic errors of the model, but a linear regression based MOS is hard to manage an irregular nature of weather prediction. In order to solve the problem, a nonlinear and symbolic regression method using GP(Genetic Programming) is suggested for a development of MOS wind forecast guidance. Also FCM(Fuzzy C-Means) clustering is adopted to mitigate bias of wind speed data. The purpose of this study is to evaluate the accuracy of the estimation by a GP based nonlinear MOS for 3 days prediction of wind speed in South Korean regions. This method is then compared to the UM model and has shown superior results. Data for 2007-2009, 2011 is used for training, and 2012 is used for testing.

Prediction Method for Trailing-edge Serrated Wind Turbine Noise (풍력발전기 톱니형 뒷전 블레이드 소음 예측 기법)

  • Han, Dongyeon;Choi, Jihoon;Lee, Soogab
    • New & Renewable Energy
    • /
    • v.16 no.2
    • /
    • pp.1-13
    • /
    • 2020
  • The reduction of noise from wind turbines has been studied using various methods. Some examples include controlling wind turbine blades, designing low-noise-emitting wind turbine blades, and using trailing-edge serrations. Among these methods, serration is considered an effective noise reduction method. Various studies have aimed to understand the effects of trailing-edge serration parameters. Most studies, however, have focused on fixed-wing concepts, and few have analyzed noise reduction or developed a prediction method for rotor-type blades. Herein, a noise prediction method, composed of two noise prediction methods for a wind turbine with trailing-edge serrations, is proposed. From the flow information obtained by an in-house program (WINFAS), the noise from non-serrated blades is calculated by turbulent ingestion noise and airfoil self-noise prediction methods. The degree of noise reduction caused by the trailing-edge serrations is predicted in the frequency domain by Lyu's method. The amount of noise reduction is subtracted from the predicted result of the non-serrated blade and the total reduction of the noise from the rotor blades is calculated.

Financial Distress Prediction Models for Wind Energy SMEs

  • Oh, Nak-Kyo
    • International Journal of Contents
    • /
    • v.10 no.4
    • /
    • pp.75-82
    • /
    • 2014
  • The purpose of this paper was to identify suitable variables for financial distress prediction models and to compare the accuracy of MDA and LA for early warning signals for wind energy companies in Korea. The research methods, discriminant analysis and logit analysis have been widely used. The data set consisted of 15 wind energy SMEs in KOSDAQ with financial statements in 2012 from KIS-Value. We found that five financial ratio variables were statistically significant and the accuracy of MDA was 86%, while that of LA is 100%. The importance of this study is that it demonstrates empirically that financial distress prediction models are applicable to the wind energy industry in Korea as an early warning signs of impending bankruptcy.

An empirical model for amplitude prediction on VIV-galloping instability of rectangular cylinders

  • Niu, Huawei;Zhou, Shuai;Chen, Zhengqing;Hua, Xugang
    • Wind and Structures
    • /
    • v.21 no.1
    • /
    • pp.85-103
    • /
    • 2015
  • Aerodynamic forces of vortex-induced vibration and galloping are going to be coupled when their onset velocities are close to each other, which will induce the cross-wind amplitudes of the structures increased continuously with ever-increasing wind velocities. The main purpose of the present work is going to propose an empirical formula to predict the response amplitude of VIV-galloping interaction. Firstly, two typical mathematical models for the coupled oscillations, i.e., Tamura & Shimada model and Parkinson & Corless model are comparatively summarized. Then, the key parameter affecting response amplitude is determined through comparative numerical simulations with Tamura & Shimada model. For rectangular cylinders with the side ratio from 0.5 to 2.5, which are actually prone to develop the VIV and galloping induced interaction responses, an empirical amplitude prediction formula is proposed after regression analysis on comprehensively collected experimental data with the predetermined key parameter.

Linear prediction and z-transform based CDF-mapping simulation algorithm of multivariate non-Gaussian fluctuating wind pressure

  • Jiang, Lei;Li, Chunxiang;Li, Jinhua
    • Wind and Structures
    • /
    • v.31 no.6
    • /
    • pp.549-560
    • /
    • 2020
  • Methods for stochastic simulation of non-Gaussian wind pressure have increasingly addressed the efficiency and accuracy contents to offer an accurate description of the extreme value estimation of the long-span and high-rise structures. This paper presents a linear prediction and z-transform (LPZ) based Cumulative distribution function (CDF) mapping algorithm for the simulation of multivariate non-Gaussian fluctuating wind pressure. The new algorithm generates realizations of non-Gaussian with prescribed marginal probability distribution function (PDF) and prescribed spectral density function (PSD). The inverse linear prediction and z-transform function (ILPZ) is deduced. LPZ is improved and applied to non-Gaussian wind pressure simulation for the first time. The new algorithm is demonstrated to be efficient, flexible, and more accurate in comparison with the FFT-based method and Hermite polynomial model method in two examples for transverse softening and longitudinal hardening non-Gaussian wind pressures.

Low Level Wind Shear Characteristics and Predictability at the Jeju International Airport (제주국제공항 저층급변풍 발생 특성 및 예측 성능)

  • Geun-Hoi Kim;Hee-Wook Choi;Jae-Hyeok Seok;Sang-Sam Lee;Yong Hee Lee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.3
    • /
    • pp.50-58
    • /
    • 2023
  • Sudden wind changes at low altitudes pose a significant threat to aircraft operations. In particular, airports located in regions with complex terrain are susceptible to frequent abrupt wind variations, affecting aircraft takeoff and landing. To mitigate these risks, Low Level Wind shear Alert System (LLWAS) have been implemented at airports. This study focuses on understanding the characteristics of wind shear and developing a prediction model for Jeju International Airport, which experiences frequent wind shear due to the influence of Halla Mountain and its surrounding terrain. Using two years of LLWAS data, the study examines the occurrence patterns of wind shear at Jeju International Airport. Additionally, high-resolution numerical model is utilized to produce forecasted information on wind shear. Furthermore, a comparison is made between the predicted wind shear and LLWAS observation data to assess the prediction performance. The results demonstrate that the prediction model shows high accuracy in predicting wind shear caused by southerly winds.

A Simple Ensemble Prediction System for Wind Power Forecasting - Evaluation by Typhoon Bolaven Case - (풍력예보를 위한 단순 앙상블예측시스템 - 태풍 볼라벤 사례를 통한 평가 -)

  • Kim, Jin-Young;Kim, Hyun-Goo;Kang, Yong-Heack;Yun, Chang-Yeol;Kim, Ji-Young;Lee, Jun-Shin
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.1
    • /
    • pp.27-37
    • /
    • 2016
  • A simple but practical Ensemble Prediction System(EPS) for wind power forecasting was developed and evaluated using the measurement of the offshore meteorological tower, HeMOSU-1(Herald of Meteorological and Oceanographic Special Unite-1) installed at the Southwest Offshore in South Korea. The EPS developed by the Korea Institute of Energy Research is based on a simple ensemble mean of two Numerical Weather Prediction(NWP) models, WRF-NMM and WRF-ARW. In addition, the Kalman Filter is applied for real-time quality improvement of wind ensembles. All forecasts with EPS were analyzed in comparison with the HeMOSU-1 measurements at 97 m above sea level during Typhoon Bolaven episode in August 2012. The results indicate that EPS was in the best agreement with the in-situ measurement regarding (peak) wind speed and cut-out speed incidence. The RMSE of wind speed was 1.44 m/s while the incidence time lag of cut-out wind speed was 0 hour, which means that the EPS properly predicted a development and its movement. The duration of cut-out wind speed period by the EPS was also acceptable. This study is anticipated to provide a useful quantitative guide and information for a large-scale offshore wind farm operation in the decision making of wind turbine control especially during a typhoon episode.

Prediction of Annual Energy Production of Wind Farms in Complex Terrain using MERRA Reanalysis Data (MERRA 재해석 자료를 이용한 복잡지형 내 풍력발전단지 연간에너지발전량 예측)

  • Kim, Jin-Han;Kwon, Il-Han;Park, Ung-Sik;Yoo, Neungsoo;Paek, Insu
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.2
    • /
    • pp.82-90
    • /
    • 2014
  • The MERRA reanalysis data provided online by NASA was applied to predict the annual energy productions of two largest wind farms in Korea. The two wind farms, Gangwon wind farm and Yeongyang wind farm, are located on complex terrain. For the prediction, a commercial CFD program, WindSim, was used. The annual energy productions of the two wind farms were obtained for three separate years of MERRA data from June 2007 to May 2012, and the results were compared with the measured values listed in the CDM reports of the two wind farms. As the result, the prediction errors of six comparisons were within 9 percent when the availabilities of the wind farms were assumed to be 100 percent. Although further investigations are necessary, the MERRA reanalysis data seem useful tentatively to predict adjacent wind resources when measurement data are not available.

Prediction of Annual Energy Production of Gangwon Wind Farm using AWS Wind Data (AWS 풍황데이터를 이용한 강원풍력발전단지 연간에너지발전량 예측)

  • Woo, Jae-kyoon;Kim, Hyeon-Gi;Kim, Byeong-Min;Paek, In-Su;Yoo, Neung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.72-81
    • /
    • 2011
  • The wind data obtained from an AWS(Automated Weather Station) was used to predict the AEP(annual energy production) of Gangwon wind farm having a total capacity of 98 MWin Korea. A wind energy prediction program based on the Reynolds averaged Navier-Stokes equation was used. Predictions were made for three consecutive years starting from 2007 and the results were compared with the actual AEPs presented in the CDM (Clean Development Mechanism) monitoring report of the wind farm. The results from the prediction program were close to the actual AEPs and the errors were within 7.8%.