• Title/Summary/Keyword: Wind prediction

Search Result 936, Processing Time 0.036 seconds

Numerical Prediction of Tidal Current due to the Density and Wind-driven Current in Yeong-il Bay (하구밀도류와 취송류가 영일만 해수유동에 미치는 영향)

  • YOON HAN-SAM;LEE IN-CHEOL;RYU CHEONG-RO
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.22-28
    • /
    • 2004
  • This study constructed a 3D real-time numerical model that predicts the water quality and movement characteristics of the inner bay, considering the characteristics of the wind-driven current and density current in estuaries, generated by the river discharge from the Hyeong-san river and oceanic water of the Eastern sea. The numerical model successfully calculated the seawater circulation current of Yeong-il Bay, using the input conditions oj the real-time tidal current, river discharge, and weather conditions during March 2001. This study also observed the wind-driven current and density current in estuaries that are effected by the seawater circulation pattern of the inner bay. We investigated and analyzed each impact factor, and its relationship to the water quality of Yeong-il bay.

The Modulation of Currents and Waves near the Korean Marginal seas computed by using MM5/KMA and WAVEWATHC-III model

  • Seo, Jang-Won;Chang, You-Soon
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.37-42
    • /
    • 2003
  • We have analyzed the characteristics of the sea surface winds and wind waves near the Korean marginal seas on the basis of prediction results of the sea surface winds from MM5/KMA model, which is being used for the operation system at the Korea Meteorological observation buoy data to verify the model results during Typhoon events. The correlation coefficients between the models and observation data reach up to about 95%, supporting that these models satisfactorily simulate the sea surface winds and wave heights even at the coastal regions. Based on these verification results, we have carried out numerical experiments about the wave modulation. When there exist an opposite strong current for the propagation direction of the waves or wind direction, wave height and length gets higher and shorter, and vice versa. It is proved that these modulations of wave parameters are well generated when wind speed is relatively week.

  • PDF

Particulate Two-Phase Flow Analysis for Fouling Prediction(I)-Design of Hot Wind Tunnel and Its Performance Experiment- (파울링 예측을 위한 가스-입자 이상 유동 해석(1)-고온 풍동 설계 및 성능실험-)

  • Ha, Man-Yeong;Lee, Dae-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.11
    • /
    • pp.3695-3705
    • /
    • 1996
  • We designed the hot wind tunnel to reproduce the conditions of utility boiler and carried out its performance test, in order to investigate the particulate two-phase flow behaviour, the fouling and heat transfer characteristics to the heat exchanger. The hot wind tunnel introduces the control system to control the temperature in the test section. The particle is injected into the hot gas stream. The fouling probe (cylindrical tube) is positioned normal to the particulate gas-particle two-phase flow and cooled by the air. The temperature of gas and cooling air, and temperature in the fouling probe are measured as a function of time, giving the local and averaged heat transfer and fouling factor. The shape of particulate deposition adhered to the fouling probe is also observed.

Performance Prediction a 10MW-Class Wind Turbine Blade Considering Aeroelastic Deformation Effect (공탄성 변형효과를 고려한 10MW급 풍력발전기 블레이드의 성능해석)

  • Kim, Dong-Hyun;Kim, Yo-Han;Ryu, Gyeong-Joong;Kim, Dong-Hwan;Kim, Su-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.657-662
    • /
    • 2011
  • In this study, aeroelastic performance analyses have been conducted for a 10MW class wind turbine blade model Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate detailed dynamic responsed of wind turbine blade Reynolds-averaged Navier-Stokes (RANS) equations with k-${\omega}$ SST turbulence model are solved for unsteady flow problems of the rotating turbine blade model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D turbine blade for fluid-structure interaction (FSI) problems.

  • PDF

A Study on the Modeling Method of Missile Fin Aerodynamic Coefficient using Wind Tunnel Test and CFD (풍동시험과 CFD 해석 결과를 반영한 유도무기 조종날개 공력계수 모델링 기법 연구)

  • Yim, Kyung Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.360-368
    • /
    • 2019
  • A study on aerodynamic modeling was performed to predict the hinge moments required for initial design of missile. Fin aerodynamic coefficients were modeled using the equivalent angle of attack method based on the wind tunnel test. In addition, CFD analysis was performed to calculate the dynamic pressure around the body and improve the accuracy of aerodynamic coefficients. The aerodynamic coefficient accuracy was verified by comparisons of the coefficient acquired from wind tunnel test and prediction of flow conditions, not involved in the model built-up. It was confirmed that fin aerodynamic coefficients can be predicted effectively by using the proposed method.

A Study on the Design of Database to Improve the Capability of Managing Offshore Wind Power Plant (해상풍력 풍력시스템의 관리능력 향상을 위한 데이터베이스 설계에 관한 연구)

  • Kim, Do-Hyung;Kim, Chang-Suk;Kyong, Nam-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.65-70
    • /
    • 2010
  • As for the present wind power industry, most of the computerization for monitoring and control is based on the traditional development methodology, but it is necessary to improve SCADA system since it has a phenomenon of backlog accumulation in the applicable aspect of back-data as well as in the operational aspect in the future. Especially for a system like offshore wind power where a superintendent cannot reside, it is desirable to operate a remote control system. Therefore, it is essential to establish a monitoring system with appropriate control and monitoring inevitably premised on the integrity and independence of data. As a result, a study was carried out on the modeling of offshore wind power data-centered database. In this paper, a logical data modeling method was proposed and designed to establish the database of offshore wind power. In order for designing the logical data modeling of an offshore wind power system, this study carried out an analysis of design elements for the database of offshore wind power and described considerations and problems as well. Through a comparative analysis of the final database of the newly-designed off-shore wind power system against the existing SCADA System, this study proposed a new direction to bring about progress toward a smart wind power system, showing a possibility of a service-oriented smart wind power system, such as future prediction, hindrance-cause examination and fault analyses, through the database integrating various control signals, geographical information and data about surrounding environments.

Evaluation of Energy Production for a Small Wind Turbine by Considering the Geometric Shape of the Deokjeok-Do Island (덕적도 지형을 고려한 소형풍력발전기 발전량 평가)

  • Jang, Choon-Man;Lee, Sang-Moon;Jeon, Wan-Ho;Lim, Tae-Gyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.6
    • /
    • pp.629-635
    • /
    • 2014
  • This paper presents annual energy production (AEP) by a 1.5kW wind turbine due to be installed in Deokjeok-Do island. Local wind data is determined by geometric shape of Deokjeok-Do island and annual wind data from Korea Institute of Energy Research at three places considered to be installed the wind turbine. Numerical simulation using WindSim is performed to obtain flow pattern for the whole island. The length of each computation grid is 40 m, and k-e turbulence model is imposed. AEP is determined by the power curve of the wind turbine and the local wind data obtained from numerical simulation. To capture the more detailed flow pattern at the specific local region, Urumsil-maul inside the island, fine mesh having the grid length of 10m is evaluated. It is noted that the input data for numerical simulation to the local region is used the wind data obtained by the numerical results for the whole island. From the numerical analysis, it is found that a local AEP at the Urumsil-maul has almost same value of 1.72 MWh regardless the grid resolutions used in the present calculation. It is noted that relatively fine mesh used for local region is effective to understand the flow pattern clearly.

Estimation of Basic Wind Speed at Bridge Construction Site Based on Short-term Measurements (단기 풍관측에 의한 교량현장 기본풍속 추정)

  • Lee, Seong-Lo;Kim, Sang-Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1271-1279
    • /
    • 2013
  • In this paper, a study on the prediction method of basic wind speed at the construction site of long-span bridge using short-term measurements was conducted. To determine the basic wind speed in the wind resistant design for the long-span bridge away from the weather station, statistical analysis of long-term data at site is required. Wind observation mast was installed at site, and short-term measurements were gathered and the correlation analysis between the site and the station was done using regression analysis and MCP(Measure-Correlate-Predict). The long-term wind data of the site was obtained from correlation formula after topographical revision of long-term data of the station. And basic wind speed could be estimated by extreme probability distribution analysis. The research results show that the wind speed by regression analysis is predicted lower than by MCP and after this study a series of correlation analyses at several sites will show clearly the difference two methods. And also a quality control of long-term wind data is very important in estimation of wind speed.

Simple assessment of wind erosion depending on the soil texture and threshold wind velocity in reclaimed tidal flat land

  • Kyo-Suk, Lee;IL-Hwan, Seo;Jae-Eui, Yang;Sang-Phil, Lee;Hyun-Gyu, Jung;Doug Young, Chung
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.843-853
    • /
    • 2021
  • The objectives of this paper were to simply estimate soil loss levels as caused by wind in reclaimed tidal flat land (RTFL) and the threshold wind velocity in the RTFL. For this experiment, RTFL located at Haenam Bay was selected and a total of 150 soil samples were collected at the Ap horizon from the five soil series. The particle distribution curves, including the limit of the non-erodible particle size (D > 0.84 mm) for each Ap horizon soil, show that the proportions of non-erodible particle sizes that exceeded 0.84 mm were 4.3% (Taehan, TH), 8.9% (Geangpo, GP), 0.5% (Bokchun, BC), 1.6% (Poseung, PS) and 1.4% (Junbook, JB), indicating that the amount of non-erodible soil particles increased with an increase in the sand content. The average monthly, daily and instantaneous wind velocities were higher than the threshold friction velocity (TFV) calculated according to the dynamic velocity (Vd) by Bagnold, while the average monthly wind velocity was lower than those of the TFV suggested by the revised wind erosion equation (RWEQ) and wind erosion prediction system (WEPS). The susceptible proportions of erodible soil particles from the Ap horizon soil samples from each soil series could be significantly influenced by the proportion of sand particles between 0.025 and 0.5 mm (or 0.84 mm) in diameter regardless of the threshold wind velocity. Thus, further investigations are needed to estimate more precisely soil erosion in RTFL, which shows various soil characteristics, as these estimations of soil loss in the five soil series were obtained only when considering wind velocities and soil textures.

Performance of Tall Buildings in Urban Zones: Lessons Learned from a Decade of Full-Scale Monitoring

  • Kijewski-Correa, T.;Kareem, A.;Guo, Y.L.;Bashor, R.;Weigand, T.
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.3
    • /
    • pp.179-192
    • /
    • 2013
  • The lack of systematic validation for the design process supporting tall buildings motivated the authors' research groups and their collaborators to found the Chicago Full-Scale Monitoring Program over a decade ago. This project has allowed the sustained in-situ observation of a collection of tall buildings now spanning worldwide. This paper overviews this program and the lessons learned in the process, ranging from appropriate technologies for response measurements to the factors influencing accurate prediction of dynamic properties all the way to how these properties then influence the prediction of response using wind tunnel testing and whether this response does indeed correlate with in-situ observations. Through this paper, these wide ranging subjects are addressed in a manner that demonstrates the importance of continued promotion and expansion of full-scale monitoring efforts and the ways in which these programs can provide true value-added to building owners and managers.