• Title/Summary/Keyword: Wind power resources

Search Result 205, Processing Time 0.033 seconds

Analysis of the Capacity Credit of Wind Farms (풍력발전기의 Capacity Credit추정에 관한 연구)

  • Wu, Liang;Park, Jeong-Je;Choi, Jae-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.16-18
    • /
    • 2008
  • Because of being environmentally friendly, renewable energy resources has been growing at a high rate. Wind energy is one of the most successfully utilized of such sources for producing electrical energy. Due to the randomness of wind speed, wind farms can not supply power with a balanceable level as well as conventional power plants. The reliability evaluation of wind power is more and more important. Capacity credit is used to estimate the capacity credit of power systems including wind farms. This paper presents a method of capacity credit calculation for a power system considered wind farms and shows how it gets study on an actual power system (the Jeju Island power system). The paper describes the step of capacity credit calculation and presents test results, which indicate its effectiveness.

  • PDF

Analyses of the Meteorological Characteristics over South Korea for Wind Power Applications Using KMAPP (고해상도 규모상세화 수치자료 산출체계를 이용한 남한의 풍력기상자원 특성 분석)

  • Yun, Jinah;Kim, Yeon-Hee;Choi, Hee-Wook
    • Atmosphere
    • /
    • v.31 no.1
    • /
    • pp.1-15
    • /
    • 2021
  • High-resolution wind resources maps (maps, here after) with spatial and temporal resolutions of 100 m and 3-hours, respectively, over South Korea have been produced and evaluated for the period from July 2016 to June 2017 using Korea Meteorological Administration (KMA) Post Processing (KMAPP). Evaluation of the 10 m- and 80 m-level wind speed in the new maps (KMAPP-Wind) and the 1.5 km-resolution KMA NWP model, Local Data Assimilation and Prediction System (LDAPS), shows that the new high-resolution maps improves of the LDAPS winds in estimating the 10m wind speed as the new data reduces the mean bias (MBE) and root-mean-square error (RMSE) by 33.3% and 14.3%, respectively. In particular, the result of evaluation of the wind at 80 m which is directly related with power turbine shows that the new maps has significantly smaller error compared to the LDAPS wind. Analyses of the new maps for the seasonal average, maximum wind speed, and the prevailing wind direction shows that the wind resources over South Korea are most abundant during winter, and that the prevailing wind direction is strongly affected by synoptic weather systems except over mountainous regions. Wind speed generally increases with altitude and the proximity to the coast. In conclusion, the evaluation results show that the new maps provides significantly more accurate wind speeds than the lower resolution NWP model output, especially over complex terrains, coastal areas, and the Jeju island where wind-energy resources are most abundant.

A Synthetical Study on Power Quality Measurement of Grid-Connected Wind Turbine Generating System based on the IEC International Standards (IEC 국제표준에 따른 계통연계형 풍력터빈 발전기계통의 전력품질 측정방법에 관한 심화연구)

  • Cho, Soo-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.197-204
    • /
    • 2014
  • As more and more renewable energy resources are connected into the existing power system and their generation capacities are increasing, the need for regulations to minimize their impacts on the power grid is increasingly growing. And minimizing the irregular impacts made by grid-connected wind generators is important, since the output power generated by renewable energy resources can be changed easily by the weather condition and surrounding environment. In South Korea, an operational technical standard for distributed generation is used as a regulation, in which renewable energy sources including wind power are considered as a kind of distributed generation. In this paper, an international standard, IEC 61400-21, for the grid-connected wind turbine generating system(WTGS) will be introduced and a comprehensive and detailed review on the measuring methods of power quality characteristic parameters for WTGS based on the related IEC standards will be presented. Additionally, some prerequisites for applying the international standards to KEPCO system will be proposed.

The Characteristics of Wind Power Resource in Urban from SODAR Observation (SODAR관측을 통해 분석한 도심지 상층의 풍력자원 특성)

  • Lee, Hwa-Woon;Park, Soon-Young;Kim, Dong-Hyuk;Jeon, Won-Bae;Cha, Yeong-Min;Kim, Hyun-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.557-560
    • /
    • 2009
  • When we urgently need to develop and supply an alternative energy, wind power is growing with much interest because it has relative low cost of power and area of tower. To estimate the wind power resource, it is necessary to make an observation first. Although the large wind falm and resources are near coast and mountain area, the wind energy in urban area has the strong thing of direct access to power generator. In this study, we estimate the probability of wind energy above urban area using SODAR data, which is located at the top of the tall building (140m).

  • PDF

Ordinal Optimization Theory Based Planning for Clustered Wind Farms Considering the Capacity Credit

  • Wang, Yi;Zhang, Ning;Kang, Chongqing;Xu, Qianyao;Li, Hui;Xiao, Jinyu;Wang, Zhidong;Shi, Rui;Wang, Shuai
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.1930-1939
    • /
    • 2015
  • Wind power planning aims to locate and size wind farms optimally. Traditionally, wind power planners tend to choose the wind farms with the richest wind resources to maximize the energy benefit. However, the capacity benefit of wind power should also be considered in large-scale clustered wind farm planning because the correlation among the wind farms exerts an obvious influence on the capacity benefit brought about by the combined wind power. This paper proposes a planning model considering both the energy and the capacity benefit of the wind farms. The capacity benefit is evaluated by the wind power capacity credit. The Ordinal Optimization (OO) Theory, capable of handling problems with non-analytical forms, is applied to address the model. To verify the feasibility and advantages of the model, the proposed model is compared with a widely used genetic algorithm (GA) via a modified IEEE RTS-79 system and the real world case of Ningxia, China. The results show that the diversity of the wind farm enhances the capacity credit of wind power.

A Development of Dedicated Data Logger for Wind Resource of Small Wind Power Generator (소형 풍력발전 적용 풍력자원조사를 위한 데이터로거 개발)

  • Youn, Young-Chan;Jeong, Moon-Seon;Kim, Sang-Man;Kim, Tae-Gon;Moon, Chae-Joo
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.146-152
    • /
    • 2012
  • To install a wind power generator, the survey on the wind environment resources must be conducted in advance. The survey on the wind environment resources is to collect and analyze data regarding the wind speed and direction on a data logger. The data logger consists of a sensor, signal processing circuit and storage device. According to the analysis of the stored data, the amount of power generation by the types of generators can be predicted and the most optimal generator including safety grade can be selected, and in case of installing a generator in the future, it can be utilized as basic data regarding supporting base and foundation construction method of survey points. Data logger was developed for a small wind power generator that is suitable for the international standard(IEC 61400) by using DSP-F28335 micro controller in this paper. It was developed to measure the wind speed of 1 [m/s]~17 [m/s], the wind direction of 0 [$^{\circ}$]~359 [$^{\circ}$], and temperature of -30 [$^{\circ}C$]~50 [$^{\circ}C$], and the comparative experiment with other companies' data loggers was conducted, and an error was measured to be less than ${\pm}0.1$ [m/s] for wind speed and less than +1 [$^{\circ}$] for wind direction.

A high-resolution mapping of wind energy potentials for Mauritius using Computational Fluid Dynamics (CFD)

  • Dhunny, Asma Z.;Lollchund, Michel R.;Rughooputh, Soonil D.D.V.
    • Wind and Structures
    • /
    • v.20 no.4
    • /
    • pp.565-578
    • /
    • 2015
  • A wind energy assessment is an integrated analysis of the potential of wind energy resources of a particular area. In this work, the wind energy potentials for Mauritius have been assessed using a Computational Fluid Dynamics (CFD) model. The approach employed in this work aims to enhance the assessment of wind energy potentials for the siting of large-scale wind farms in the island. Validation of the model is done by comparing simulated wind speed data to experimental ones measured at specific locations over the island. The local wind velocity resulting from the CFD simulations are used to compute the weighted-sum power density including annual directional inflow variations determined by wind roses. The model is used to generate contour maps of velocity and power, for Mauritius at a resolution of 500 m.

Analysis of Wind Energy Potential on the West Coast of South Korea Using Public Data from the Korea Meteorological Administration (기상청 공공데이터를 활용한 대한민국 서해안 일대의 바람자원 분석)

  • Sangkyun Kang;Sung-Ho Yu;Sina Hadadi;Dae-Won Seo;Jungkeun Oh;Jang-Ho Lee
    • Journal of Wind Energy
    • /
    • v.14 no.3
    • /
    • pp.14-24
    • /
    • 2023
  • The significance of renewable energy has been on the rise, as evidenced by the 3020 renewable energy plan and the 2050 carbon neutrality strategy, which seek to advance a low-carbon economy by implementing a power supply strategy centered around renewable energy sources. This study examines the wind resources on the west coast of South Korea and confirms the potential for wind power generation in the area. Wind speed data was collected from 22 automatic weather system stations and four light house automatic weather system stations provided by the Korea Meteorological Administration to evaluate potential sites for wind farms. Weibull distribution was used to analyze the wind data and calculate wind power density. Annual energy production and capacity factors were estimated for 15-20 MW-class large wind turbines through the height correction of observed wind speeds. These findings offer valuable information for selecting wind power generation sites, predicting economic feasibility, and determining optimal equipment capacity for future wind power generation sites in the region.

The Properties of Wind Analyzed by Observation of Tethered Sonde and Sodar in Gwangyang Coastal Area (Tethered Sonde와 Sodar 관측으로 분석한 광양만 지역의 풍환경 특성)

  • Lee, Hwa-Woon;Park, Soon-Young;Lim, Heon-Ho;Kim, Dong-Hyuk;Kim, Min-Jung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.324-326
    • /
    • 2008
  • When we urgently need to develop and supply an alternative energy, wind power is growing with much interest because it has relative low cost of power and area of tower. To estimate the wind power resource, it is necessary to make an wind resource map first. On the study of wind resource map in the Korean peninsula, Southern coast was needed to investigate the possibility of developing wind power complex because of good wind resources. In this study, we made a vertical observation to analyze the properties of wind in coastal area. From tethered sonde observation, we knew that synoptic effect had an influence higher in second day than first day. This means local wind circulation is generated on first day but not second day. The local wind made vertical wind shear strong in first day. Also, there was large difference of wind speed between layers at night time by analysis of SODAR observation.

  • PDF

Feasibility study of wind power generation considering the topographical characteristics of Korea (우리나라 지형특성을 고려한 풍력발전 타당성 연구)

  • Moon, Chae-Joo;Cheang, Eui-Heang;Shim, Kwan-Shik;Jung, Kwen-Sung;Chang, Young-Hak
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.6
    • /
    • pp.24-32
    • /
    • 2008
  • This paper discussed the Feasibility study of wind power generation considering the topographical characteristics of Korea. In order to estimate the exact generation of wind power plants, we analyzed and compared wind resources in mountain areas and plain areas by introducing not only wind speed, the most important variable, but also wind distribution and wind standard deviation that can reflect the influence of landform sufficiently. According to the results of this study, generation was almost the same at wind power plants installed in southwestern coastal areas where wind speed was low as at those installed in mountain areas in Gangwondo where wind speed was high. This demonstrates that the shape parameter of wind distribution is low due to the characteristics of mountain areas, and the standard deviation of wind speed is large due to the effect of mountain winds, therefore, actual generation compared to southwestern coastal areas is almost similar in mountain areas even though wind speed is high.