• Title/Summary/Keyword: Wind power generating

Search Result 136, Processing Time 0.041 seconds

A study on the performance evaluation and technical development of an eco-environmental photovoltaic solar leisure boat with applied sail control device (접이식 풍력 Sail 돛 제어장치를 적용한 친환경 태양광 레져보트의 성능평가)

  • Moon, Byung-Young;Lee, Sung-Bum;Lee, Ki-Yeol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.240-248
    • /
    • 2016
  • As a new technical approach, the achievement of an eco-environmental leisure boat with a photovoltaic system is attempted by simultaneously actuating nine photovoltaic solar panels, in association with an applied sail control system by use of wind. In this approach, the photovoltaic system consists of a solar module, an inverter, a battery, and relevant components, while the sail control device is equipped with a sail up/down and mast-turning instrument. Furthermore, this research conducts a performance evaluation of the manufactured prototype and acquires the purposed quantity value and the development purpose items. The significant items-sail up/down speed (seconds) and mast turning angle (degrees)-are evaluated during the performance test. In the process of the performance evaluation, a wind direction sensitivity of 90% and a maximum instant charging power of 900 W were also obtained. In addition, the maximum sail time is evaluated in order to acquire the optimum quantity.

Distribution of vibration signals according to operating conditions of wind turbine (풍력발전기 운전환경에 따른 진동신호 분포)

  • Shin, Sung-Hwan;Kim, SangRyul;Seo, Yun-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.3
    • /
    • pp.192-201
    • /
    • 2016
  • Condition Monitoring System (CMS) has been used to detect unexpected faults of wind turbine caused by the abrupt change of circumstances or the aging of its mechanical part. In fact, it is a very hard work to do regular inspection for its maintenance because wind turbine is located on the mountaintop or sea. The purpose of this study is to find out distribution patterns of vibration signals measured from the main mechanical parts of wind turbine according to its operation condition. To this end, acceleration signals of main bearing, gearbox, generator, wind speed, rotational speed, etc were measured through the long period more than 2 years and trend analyses on each signal were conducted as a function of the rotational speed. In addition, correlation analysis among the signals was done to grasp the relation between mechanical parts. As a result, the vibrations were dependent on the rotational speed of main shaft and whether power was generated or not, and their distributions at a specific rotational speed could be approximated to Weibull distribution. It was also investigated that the vibration at main bearing was correlated with vibration at gearbox each other, whereas vibration at generator should be dealt with individually because of generating mechanism. These results can be used for improving performance of CMS that early detects the mechanical abnormality of wind turbine.

Performance Analysis on 2-Bladed Tidal Current Power Turbine (해양 조류발전용 2블레이드 터빈의 성능해석)

  • Lee, Kanghee;Yim, Jinyoung;Rho, Yuho;Song, Seungho;Jo, Chulhee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.236.1-236.1
    • /
    • 2010
  • Due to global warming, the need to secure an alternative resource has become more important nationally. Due to the high tidal range of up to 9.7m on the west coast of Korea, numerous tidal current projects are being planned and constructed. The rotor, which initially converts the energy, is a very important component because it affects the efficiency of the entire system, and its performance is determined by various design variables. In this paper, a design guideline of current generating HAT rotor and acceptable field rotor in offshore environment is proposed. To design HAT rotor model, wind mill rotor design principles and turbine theories were applied based on a field HAT rotor experimental data. To verify the compatibility of the rotor design method and to analyze the properties of design factors, 3D CFD model was designed and analysed by ANSYS CFX. The analysis results and findings are summarized in the paper.

  • PDF

Study on Flow Characteristics in an Augmentation Channel of a Direct Drive Turbine for Wave Energy Conversion Using CFD

  • Prasad, Deepak;Kim, Chang-Goo;Choi, Young-Do;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.594-599
    • /
    • 2009
  • Recent developments such as concern over global warming, depletion of fossil fuels and increase in energy demands by the increasing world population has eventually lead to mass production of electricity using renewable sources. Apart from wind and solar, ocean holds tremendous amount of untapped energy in forms such as geothermal vents, tides and waves. The current study looks at generating power using waves and the focus is on the primary energy conversion (first stage conversion) of incoming waves for different models. Observation of flow characteristics and the velocity in the augmentation channel as well as the front guide nozzle are presented in the paper. A numerical wave tank was used to simulate the waves and after obtaining the desired wave properties; the augmentation channel plus the front guide nozzle and rear chamber were integrated to the numerical wave tank. The waves in the numerical wave tank were generated by a piston type wave maker which was located at the wave tank inlet. The inlet which was modeled as a plate wall moved sinusoidally with the general function, x=asin$\omega$t The augmentation channel consisted of a front nozzle, rear nozzle and an internal fluid region representing the turbine housing. The analysis was performed using the commercial CFD code ANSYS-CFX.

  • PDF

Examination of excess electricity generation patterns in South Korea under the renewable initiative for 2030

  • Kim, Philseo;Cho, So-Bin;Yim, Man-Sung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2883-2897
    • /
    • 2022
  • According to the Renewable Energy 3020 Implementation Plan announced in 2017 by the South Korean government, the electricity share of renewable energy will be expanded to 20% of the total electricity generation by 2030. Given the intermittency of electricity generation from renewable energy, realization of such a plan presents challenges to managing South Korea's isolated national electric grid and implies potentially large excess electricity generation in certain situations. The purpose of this study is: 1) to develop a model to accurately simulate the effects of excess electricity generation from renewables which would arise during the transition, and 2) to propose strategies to manage excess electricity generation through effective utilization of domestic electricity generating capabilities. Our results show that in periods of greater PV and wind power, namely the spring and fall seasons, the frequency of excess electricity generation increases, while electricity demand decreases. This being the case, flexible operation of coal and nuclear power plants along with LNG and pumped-storage hydroelectricity can be used to counterbalance the excess electricity generation from renewables. In addition, nuclear energy plays an important role in reducing CO2 emissions and electricity costs unlike the fossil fuel-based generation sources outlined in the 8th Basic Plan.

Dynamic Response Analysis of Pressurized Air Chamber Breakwater Mounted Wave-Power Generation System Utilizing Oscillating Water Column (진동수주형 파력발전 시스템을 탑재한 압축공기 주입식 방파제의 동적거동 해석)

  • Lee, Kwang-Ho;Kim, Do-Sam;Yook, Sung-Min;Jung, Yeong-Hoon;Jung, Ik-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.4
    • /
    • pp.225-243
    • /
    • 2014
  • As the economic matters are involved, applying the WEC, which is used for controlling waves as well as utilizing the wave energy on existing breakwater, is preferred rather than installing exclusive WEC. This study examines the OWC mounted on a pressurized air chamber floating breakwater regarding the functionality of both breakwater and wave-power generation. In order to verify the performance as a WEC, the velocity of air flow from pressurized air chamber to WEC has to be evaluated properly. Therefore, numerical simulation was implemented based on BEM from linear velocity potential theory as well as Boyle's law with the state equation to analyze pressurized air flow. The validity of the obtained values can be determined by comparing the previous results from numerical analysis and empirically obtained values of different shapes. In the actual numerical analysis, properties of wave deformation around OWC system mounted on fixed type and floating type breakwaters, motions of the structure with air flow velocities are investigated. Since, the wind power generating system can be hybridized on the structure, it is expected to be applied on complex power generation system which generates both wind and wave power energy.

Study on Thermal Load Capacity of Transmission Line Based on IEEE Standard

  • Song, Fan;Wang, Yanling;Zhao, Lei;Qin, Kun;Liang, Likai;Yin, Zhijun;Tao, Weihua
    • Journal of Information Processing Systems
    • /
    • v.15 no.3
    • /
    • pp.464-477
    • /
    • 2019
  • With the sustained and rapid development of new energy sources, the demand for electric energy is increasing day by day. However, China's energy distribution is not balanced, and the construction of transmission lines is in a serious lag behind the improvement of generating capacity. So there is an urgent need to increase the utilization of transmission capacity. The transmission capacity is mainly limited by the maximum allowable operating temperature of conductor. At present, the evaluation of transmission capacity mostly adopts the static thermal rating (STR) method under severe environment. Dynamic thermal rating (DTR) technique can improve the utilization of transmission capacity to a certain extent. In this paper, the meteorological parameters affecting the conductor temperature are analyzed with the IEEE standard thermal equivalent equation of overhead transmission lines, and the real load capacity of 220 kV transmission line is calculated with 7-year actual meteorological data in Weihai. Finally, the thermal load capacity of DTR relative to STR under given confidence is analyzed. By identifying the key parameters that affect the thermal rating and analyzing the relevant environmental parameters that affect the conductor temperature, this paper provides a theoretical basis for the wind power grid integration and grid intelligence. The results show that the thermal load potential of transmission lines can be effectively excavated by DTR, which provides a theoretical basis for improving the absorptive capacity of power grid.

Design and Verification of Disturbace Observer based Controller for Windturbine with Two Cooperative Generators (두 대의 협력적인 발전기를 갖는 풍력발전기의 외란관측기 기반 제어기의 설계 및 검증)

  • Lee, Kook-Sun;Cho, Whang;Back, Ju-Hoon;Choy, Ick
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.2
    • /
    • pp.301-308
    • /
    • 2017
  • This paper proposes a disturbance observer based controller design method for generating and yawing control of windturbine with two cooperative generators. Windturbine system with two cooperative generators is a distinct structure in which the wind energy supplied by blade axis is converted into electrical energy by two cooperative generators. In this structure, two generators can be controlled independently and therefore they can generate power, simultaneously performing yawing control of nacelle without extra yawing mechanism by cooperatively controlling generating load in appropriate manner. Using this structural trait, this paper designs a disturbance observer based controller that enables the windturbine system with cooperative generators to generate and yaw stably, and verifies the performance of the controller experimentally by applying it to a small-scale windturbine system with the same structure.

A Study on Operating Characteristics and Design Factors of Floating Photovoltaic Generating Facilities (수상태양광 발전시스템의 운영특성 및 설계요소에 관한 연구)

  • Kim, Hyun-Han;Kim, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.10
    • /
    • pp.1532-1539
    • /
    • 2017
  • The floating photovoltaic system is a new concept in the renewable energy technology. That is similar to land based photovoltaic technology except floating system. So the system needs buoyant objects, mooring, ect, besides modules and supports, and that is able to withstand in water level changes and wind strength. Therefore the floating photovoltaic system is much different from land photovoltaic system. K-water (Korea Water Resources Corporation) has been operating two floating photovoltaic system that's capacity is 100 kW and 500 kW respectively since in summer 2011 for commercial generation, and have construction project for 2,000 kW in Boryeong multipurpose Dam and other areas. Furthermore K-water was developing a tracking-type floating photovoltaic system at Daecheong multipurpose Dam and developed and installed an ocean floating photovoltaic demonstration plant at Sihwa Lake in October 2013 for R&D. In this paper, we introduce that structure of floating photovoltaic system include buoyant structure, mooring system and auxiliary device. Especially the rope which is in part of mooring should be always maintain tension under any water level. Also we explain about structure design concept to wind load in an every loading condition and a kind of structure materials and PV structure types used in water environment. Especially ocean floating PV system is affected by tidal current and typhoon. So there are considering the elements in design. Finally we compare with floating and land photovoltaic on power amount. As a result of that we verified the floating photovoltaic system is more about 6.6~14.2 % efficiency than a general land photovoltaic system.

Converting Ieodo Ocean Research Station Wind Speed Observations to Reference Height Data for Real-Time Operational Use (이어도 해양과학기지 풍속 자료의 실시간 운용을 위한 기준 고도 변환 과정)

  • BYUN, DO-SEONG;KIM, HYOWON;LEE, JOOYOUNG;LEE, EUNIL;PARK, KYUNG-AE;WOO, HYE-JIN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.23 no.4
    • /
    • pp.153-178
    • /
    • 2018
  • Most operational uses of wind speed data require measurements at, or estimates generated for, the reference height of 10 m above mean sea level (AMSL). On the Ieodo Ocean Research Station (IORS), wind speed is measured by instruments installed on the lighthouse tower of the roof deck at 42.3 m AMSL. This preliminary study indicates how these data can best be converted into synthetic 10 m wind speed data for operational uses via the Korea Hydrographic and Oceanographic Agency (KHOA) website. We tested three well-known conventional empirical neutral wind profile formulas (a power law (PL); a drag coefficient based logarithmic law (DCLL); and a roughness height based logarithmic law (RHLL)), and compared their results to those generated using a well-known, highly tested and validated logarithmic model (LMS) with a stability function (${\psi}_{\nu}$), to assess the potential use of each method for accurately synthesizing reference level wind speeds. From these experiments, we conclude that the reliable LMS technique and the RHLL technique are both useful for generating reference wind speed data from IORS observations, since these methods produced very similar results: comparisons between the RHLL and the LMS results showed relatively small bias values ($-0.001m\;s^{-1}$) and Root Mean Square Deviations (RMSD, $0.122m\;s^{-1}$). We also compared the synthetic wind speed data generated using each of the four neutral wind profile formulas under examination with Advanced SCATterometer (ASCAT) data. Comparisons revealed that the 'LMS without ${\psi}_{\nu}^{\prime}$ produced the best results, with only $0.191m\;s^{-1}$ of bias and $1.111m\;s^{-1}$ of RMSD. As well as comparing these four different approaches, we also explored potential refinements that could be applied within or through each approach. Firstly, we tested the effect of tidal variations in sea level height on wind speed calculations, through comparison of results generated with and without the adjustment of sea level heights for tidal effects. Tidal adjustment of the sea levels used in reference wind speed calculations resulted in remarkably small bias (<$0.0001m\;s^{-1}$) and RMSD (<$0.012m\;s^{-1}$) values when compared to calculations performed without adjustment, indicating that this tidal effect can be ignored for the purposes of IORS reference wind speed estimates. We also estimated surface roughness heights ($z_0$) based on RHLL and LMS calculations in order to explore the best parameterization of this factor, with results leading to our recommendation of a new $z_0$ parameterization derived from observed wind speed data. Lastly, we suggest the necessity of including a suitable, experimentally derived, surface drag coefficient and $z_0$ formulas within conventional wind profile formulas for situations characterized by strong wind (${\geq}33m\;s^{-1}$) conditions, since without this inclusion the wind adjustment approaches used in this study are only optimal for wind speeds ${\leq}25m\;s^{-1}$.