• Title/Summary/Keyword: Wind power conversion

Search Result 137, Processing Time 0.024 seconds

Implementation and Control of AC-DC-AC Power Converter in a Grid-Connected Variable Speed Wind Turbine System with Synchronous Generator (동기기를 사용한 계통연계형 가변속 풍력발전 시스템의 AC-DC-AC 컨버터 구현 및 제어)

  • Song Seung-Ho;Kim Sung-Ju;Hahm Nyon-Kun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.12
    • /
    • pp.609-615
    • /
    • 2005
  • A 30kW electrical power conversion system is developed for a variable speed wind turbine. In the wind energy conversion system(WECS) a synchronous generator with field current excitation converts the mechanical energy into electrical energy. As the voltage and the frequency of the generator output vary according to the wind speed, a 6-bridge diode rectifier and a PWM boost chopper is utilized as an ac-dc converter maintaining the constant dc-link voltage with only single switch control. An input current control algorithm for maximum power generation during the variable speed operation is proposed without any usage of speed sensor. Grid connection type PWM inverter converts dc input power to ac output currents into the grid. The active power to the grid is controlled by q-axis current and the reactive power is controlled by d-axis current with appropriate decoupling. The phase angle of utility voltage is detected using software PLL(Phased Locked Loop) in d-q synchronous reference frame. Experimental results from the test of 30kW prototype wind turbine system show that the generator power can be controlled effectively during the variable speed operation without any speed sensor.

Comparison of MPPT Based on Fuzzy Logic Controls for PMSG

  • Putri, Adinda Ihsani;Choi, Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.285-286
    • /
    • 2011
  • Maximum Power Point Tracker (MPPT) is the big issue in generating power based on Wind Energy Conversion System. In case of unknown turbine characteristic, it is useful to implement MPPT based on fuzzy logic control. This kind of control is able to find the value of duty cycle to meet maximum power point at particular wind speed. There are many methods to develop MPPT based fuzzy logic controls. In this paper, two of the methods are compared both at low and high fluctuating wind speed.

  • PDF

Preliminary hydrodynamic assessments of a new hybrid wind wave energy conversion concept

  • Allan C de Oliveira
    • Ocean Systems Engineering
    • /
    • v.13 no.1
    • /
    • pp.21-41
    • /
    • 2023
  • Decarbonization and energy transition can be considered as a main concern even for the oil industry. One of the initiatives to reduce emissions under studies considers the use of renewable energy as a complimentary supply of electric energy of the production platforms. Wind energy has a higher TRL (Technology Readiness Level) than other types of energy converters and has been considered in these studies. However, other types of renewable energy have potential to be used and hybrid concepts considering wind platforms can help to push the technological development of other types of energy converters and improve their efficiency. In this article, a preliminary hydrodynamic assessment of a new concept of hybrid wind and wave energy conversion platform was performed, in order to evaluate the potential of wave power extraction. A multiple OWCs (Oscillating Water Column) WEC (Wave Energy Converter) design was adopted for the analysis and some simplifications were adopted to permit using a frequency domain approach to evaluate the mean wave power estimation for the location. Other strategies were used in the OWC design to create resonance in the sea energy range to try to maximize the potential power to be extracted, with good results.

Development of Unified SCADA System Based on IEC61850 in Wave-Offshore Wind Hybrid Power Generation System (파력-해상풍력 복합발전시스템의 IEC61850기반 통합 SCADA시스템 개발)

  • Lee, Jae-Kyu;Lee, Sang-Yub;Kim, Tae-Hyoung;Ham, Kyung-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.811-818
    • /
    • 2016
  • This paper suggests a structure of power control system in floating wave-offshore wind hybrid power generation system. We have developed an unified SCADA(Supervisory Control and Data Acquisition) system which can be used to monitor and control PCS(Power Conversion System) based on IEC61850. The SCADA system is essential to perform the algorithm like proportional distribution and data acquisition, monitoring, active power, reactive power control in hybrid power generation system. IEC61850 is an international standard for electrical substation automation systems. It was made to compensate the limitations of the legacy industrial protocols such as Modbus. In order to test the proposed SCADA system and algorithm, we have developed the wind-wave simulator based Modbus. We have designed a protocol conversion device based on real-time Linux for the communication between Modbus and IEC61850. In this study, SCADA system consists of four 3MW class wind turbines and twenty-four 100kW class wave force generator.

Design and Experimental Validation of a Digital Predictive Controller for Variable-Speed Wind Turbine Systems

  • Babes, Badreddine;Rahmani, Lazhar;Chaoui, Abdelmadjid;Hamouda, Noureddine
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.232-241
    • /
    • 2017
  • Advanced control algorithms must be used to make wind power generation truly cost effective and reliable. In this study, we develop a new and simple control scheme that employs model predictive control (MPC), which is used in permanent magnet synchronous generators and grid-connected inverters. The proposed control law is based on two points, namely, MPC-based torque-current control loop is used for the generator-side converter to reach the maximum power point of the wind turbine, and MPC-based direct power control loop is used for the grid-side converter to satisfy the grid code and help improve system stability. Moreover, a simple prediction scheme is developed for the direct-drive wind energy conversion system (WECS) to reduce the computation burden for real-time applications. A small-scale WECS laboratory prototype is built and evaluated to verify the validity of the developed control methods. Acceptable results are obtained from the real-time implementation of the proposed MPC methods for WECS.

Voltage Impacts of a Variable Speed Wind Turbine on Distribution Networks

  • Kim, Seul-Ki;Kim, Eung-Sang
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.4
    • /
    • pp.206-213
    • /
    • 2003
  • The main purpose of this paper is to present a simulation model for assessing the impacts of a variable speed wind turbine (VSWT) on the distribution network and perform a simulation analysis of voltage profiles along the wind turbine installed feeder using the presented model. The modeled wind energy conversion system consists of a fixed pitch wind turbine, a synchronous generator, a rectifier and a voltage source inverter (VSI). Detailed study on the voltage impacts of a variable speed wind turbine is conducted in terms of steady state and dynamic behaviors. Various capacities and different modes of variable speed wind turbines are simulated and investigated. Case studies demonstrate how feeder voltages are influenced by capacity and control modes of wind turbines and changes in wind speed under different network conditions. Modeling and simulation analysis is based on PSCAD/EMTDC a software package.

NEURAL NETWORK CONTROLLER FOR A PERMANENT MAGNET GENERATOR APPLIED IN WIND ENERGY CONVERSION SYSTEM

  • Eskander Mona N.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.656-659
    • /
    • 2001
  • In this paper a neural network controller for achieving maximum power tracking as well as output voltage regulation, for a wind energy conversion system(WECS) employing a permanent magnet synchronous generator, is proposed. The permanent magnet generator (PMG) supplies a dc load via a bridge rectifier and two buck-boost converters. Adjusting the switching frequency of the first buck-boost converter achieves maximum power tracking. Adjusting the switching frequency of the second buck-boost converter allows output voltage regulation. The on-times of the switching devices of the two converters are supplied by the developed neural network(NN). The effect of sudden changes in wind speed ,and/or in reference voltage on the performance of the NN controller are explored. Simulation results showed the possibility of achieving maximum power tracking and output voltage regulation simultaneously with the developed neural network controller. The results proved also the fast response and robustness of the proposed control system.

  • PDF

Analysis of Economical efficiency for renewable energy in Steam Power Plant (신재생에너지 적용에 따른 화력발전 경제성분석)

  • Choi, Kyoung-Sik
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.1
    • /
    • pp.11-17
    • /
    • 2014
  • Since the Renewable Portfolio Standard (RPS) would be started in 2012, the use of renewable energy should be 11% of total energy use including bio-fuel in 2030. The economic efficiency for renewable energy in B power plant was considered with the bio-diesel, wind power and solar power. The Net Present Value (NPV) and Benefit/Cost Ratio(BC) were used for the economic efficiency with the cost and benefit analysis. In case of bio-diesel, the cost resulted from the fuel conversion and the benefit would be created with trade and environmental improvement. With regard to wind power and solar power, the construction cost would be required and benefit factors would be same as the bio-diesel. The wind power was the best of economic efficiency of renewable energy as the results of NPV and BC ratio. Whereas, the market of wind power was very popular and the techniques of wind power has been developing rapidly.

A Study on Generator Temperature and Power Converter Efficiency according to change of Wind Velocity (풍속 변화에 따른 발전기 온도 및 전력변환장치 효율에 관한 연구)

  • Song, Young-Sang;Han, Woon-Ki;Jung, Jin-Soo;Lim, Hyun-Sung;Cho, Sung-Koo;Jeon, Taehyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.7
    • /
    • pp.8-13
    • /
    • 2015
  • Recently, because a renewable power source must operate as a constant rate in accordance with RPS(Renewable Portfolio Standard), the study of the renewable power sources has been ongoing. Especially because of noise of wind turbine, troubleshooting, and urban greening business, research related with small wind turbine are underway. The economics and reliability are important parts for the activation of small wind turbine, such as solar energy. In this paper, by analyzing the temperature variations for each location and efficiency of power conversion devices in accordance with short period wind speed changes in simulation test, we reviewed the safety about temperature variations of wind generator and the method of selection of power converter.

Application Feasibility Analysis of STATCOM for Wind Power System with Induction Generator (유도발전기식 풍력발전시스템의 STATCOM 적용 타당성 분석)

  • Bae, Byung-Yeol;Han, Byung-Moon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.702-705
    • /
    • 2005
  • The wind power is known as the most promising future energy source to obtain the electricity. Induction generator is a simple energy conversion wit in the wind power generation system but it consumes the reactive power from the interconnected power system. Switched capacitor banks are normally used to compensate the reactive power, which bring about the transient overvoltage. This paper proposes a method for compensating the reactive power with STATCOM. A detail simulation model for analyzing the interaction between the wind power system and the commercial power system was developed using EMTDC software. The developed simulation model can be effectively utilized to plan the reactive power compensation for newly designed wind power system.

  • PDF