• Title/Summary/Keyword: Wind power conversion

Search Result 137, Processing Time 0.028 seconds

Supervisory Control for Energy Management of Islanded Hybrid AC/DC Microgrid

  • Mansour, Henda Ben;Chaarabi, Lotfi;Jelassi, Khaled;Guerrero, Josep M.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.355-363
    • /
    • 2022
  • This paper presents the modeling for islanded hybrid AC/DC microgrid and the verification of the proposed supervisory controller for energy management for this microgrid. The supervisory controller allows the microgrid system to operate in different power flows through the proposed control algorithm, it has several roles in the management of the energy flow between the different components of the microgrid for reliable operation. The proposed microgrid has both essential objectives such as the maximum use of renewable energies resources and the reduction of multiple conversion processes in an individual AC or DC microgrids. The microgrid system considered for this study has a solar photovoltaic (PV), a wind turbine (WT), a battery (BT), and a AC/DC loads. A small islanded hybrid AC/DC microgrid has been modeled and simulated using the MATLAB-Simulink. The simulation results show that the system can maintain stable operation under the proposed supervisory controller when the microgrid is switched from one operating mode of energy flow to another.

Recent Research Trend of Zinc-ion Secondary Battery Materials for Next Generation Batterie (차세대 이차전지용 아연 이온 이차전지 소재 연구 개발 동향)

  • Jo, Jeonggeun;Kim, Jaekook
    • Ceramist
    • /
    • v.21 no.4
    • /
    • pp.312-330
    • /
    • 2018
  • Energy storage/conversion has become crucial not only to meet the present energy demand but also more importantly to sustain the modern society. Particularly, electrical energy storage is critical not only to support electronic, vehicular and load-levelling applications but also to efficiently commercialize renewable energy resources such as solar and wind. While Li-ion batteries are being intensely researched for electric vehicle applications, there is a pressing need to seek for new battery chemistries aimed at stationary storage systems. In this aspect, Zn-ion batteries offer a viable option to be utilized for high energy and power density applications since every intercalated Zn-ion yields a concurrent charge transfer of two electrons and thereby high theoretical capacities can be realized. Furthermore, the simplicity of fabrication under open-air conditions combined with the abundant and less toxic zinc element makes aqueous Zn-ion batteries one of the most economical, safe and green energy storage technologies with prospective use for stationary grid storage applications. Also, Zn-ion batteries are very safe for next-generation technologies based on flexible, roll-up, wearable implantable devices the portable electronics market. Following this advantages, a wide range of approaches and materials, namely, cathodes, anodes and electrolytes have been investigated for Zn-ion batteries applications to date. Herein, we review the progresses and major advancements related to aqueous. Zn-ion batteries, facilitating energy storage/conversion via $Zn^{2+}$ (de)intercalation mechanism.

Modeling of Solar/Hydrogen/DEGS Hybrid System for Stand Alone Applications of a Large Store

  • Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.11
    • /
    • pp.57-68
    • /
    • 2013
  • The market for distributed power generation based on renewable energy is increasing, particularly for standalone mini-grid applications in developing countries with limited energy resources. Stand-alone power systems (SAPS) are of special interest combined with renewable energy design in areas not connected to the electric grid. Traditionally, such systems have been powered by diesel engine generator sets (DEGS), but also hybrid systems with photovoltaic and/or wind energy conversion systems (WECS) are becoming quite common nowadays. Hybrid energy systems can now be used to generate energy consumed in remote areas and stand-alone microgrids. This paper describes the design, simulation and feasibility study of a hybrid energy system for a stand-alone power system. A simulated model is developed to investigate the design and performance of stand-alone hydrogen renewable energy systems. The analysis presented here is based on transient system simulation program (TRNSYS) with realistic ventilation load of a large store. Design of a hybrid energy system is site specific and depends on the resources available and the load demand.

Development of ELCB with Built-in Algorithm for DC Leakage Current Detection (DC 누설 전류 검출 알고리즘을 내장한 누전 차단기 개발)

  • Joo, Nam-Kyu;Kim, Nam-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.2
    • /
    • pp.165-169
    • /
    • 2014
  • Digital load is increasing suddenly for various reasons, such as easy control and management. Accordingly, a consumption pattern of load is becoming DC. However, the power supply is supplied by AC power. The load power supply substantially needs DC power. AC power has to be converted to DC power. Renewable energy sources like solar, wind, fuel cells are DC power generation, but the transfer needs to through by AC power, thus DC power has to be converted to AC power. Resultantly, a multi-stage conversion loss is constantly increasing. The power distribution system of DC-based is required for effective use of these energy sources. This requires a DC load, as well as is necessary to develop DC ELCB which are able to detect DC leakage current for implementing protection. In this study, it realize detection algorithm about DC leakage current to verify the performance of the sensor and apply it to the ELCB which is based on DC. Therefore, it is expected to protect operating of DC power distribution system.

A Study on the Hybrid Arc Extinguishing Mechanism of the DC Circuit Breaker (DC 차단기의 하이브리드 아크 소호 기법에 관한 연구)

  • Joo, Nam-Kyu;Kim, Nam-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.3
    • /
    • pp.250-256
    • /
    • 2015
  • Digital load is increasing suddenly for various reasons, such as easy control and management. Accordingly, a consumption pattern of load is becoming DC. However, the power supply is supplied by AC power. The load power supply substantially needs DC power. AC power has to be converted to DC power. Renewable energy sources like solar, wind and fuel cells are DC power generation, but the transfer needs to through by AC power, thus DC power has to be converted to AC power. Resultantly, a multi-stage conversion loss is constantly increasing. The power distribution system of DC-based is required for effective use of these energy sources. This requires a DC load, as well as is necessary to develop DC breaker. This study is expect for system and equipment for reliable DC power distribution through the study of the arc extinguish technology for direct current a hybrid arc extinguishing technology with permanent magnets technology.

Production of Solar Fuel by Plasma Oxidation Destruction-Carbon Material Gasification Conversion (플라즈마 산화분해-탄화물 가스화 전환에 의한 태양연료 생산)

  • Song, Hee Gaen;Chun, Young Nam
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.72-78
    • /
    • 2020
  • The use of fossil fuel and biogas production causes air pollution and climate change problems. Research endeavors continue to focus on converting methane and carbon dioxide, which are the major causes of climate change, into quality energy sources. In this study, a novel plasma-carbon converter was proposed to convert biogas into high quality gas, which is linked to photovoltaic and wind power and which poses a problem on generating electric power continuously. The characteristics of conversion and gas production were investigated to find a possibility for biogas conversion, involving parametric tests according to the change in the main influence variables, such as O2/C ratio, total gas feed rate, and CO2/CH4 ratio. A higher O2/C ratio gave higher conversions of methane and carbon dioxide. Total gas feed rate showed maximum conversion at a certain specified value. When CO2/CH4 feed ratio was decreased, both conversions increased. As a result, the production of solar fuel by plasma oxidation destruction-carbon material gasification conversion, which was newly suggested in this study, could be known as a possibly useful technology. When O2/C ratio was 0.8 and CO2/CH4 was 0.67 while the total gas supply was at 40 L min-1 (VHSV = 1.37), the maximum conversions of carbon dioxide and methane were achieved. The results gave the highest production for hydrogen and carbon dioxide which were high-quality fuel.

Experimental Analysis of a Supersonic Plasma Wind Tunnel Using a Segmented Arc Heater with the Power Level of 0.4 MW (0.4 MW 급 분절형 아크 히터를 이용한 초음속 플라즈마 풍동 특성 실험)

  • Kim, Min-Ho;Lee, Mi-Yeon;Kim, Jeong-Soo;Choi, Chea-Hong;Seo, Jun-Ho;Moon, Se-Yeon;Hong, Bong-Guen
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.9
    • /
    • pp.700-707
    • /
    • 2013
  • Experimental analyses on a supersonic plasma wind tunnel of CBNU (Chonbuk National University) were carried out. In these experiments, a segmented arc heater was employed as a plasma source and operated at the gas flow rates of 16.3 g/s and the total currents of 300 A. The input power reached ~350 kW with the torch efficiency of 51.4 %, which is defined as the ratio of total exit enthalpy to the input power. The pressure of plasma gas in the arc heater was measured up to 4 bar while it was down to ~45 mbar in a vacuum chamber through a Laval nozzle. During this conversion process, the generated supersonic plasma was expected to have a total enthalpy of ~11 MJ/kg from the measured input power and torch efficiency. In addition to the measurement of total enthalpy, a cone type probe was inserted into the supersonic plasma flow in order to estimate the angle between shock layer and surface of the probe. From these measurements, the temperature and the Mach number of the supersonic plasma were predicted as ~2,950 K and ~3.7, respectively.

Test Results of Simulator for 750-kW Gearless Wind Turbine (750-kW풍력발전기 개발을 위한 모의시험 장치의 시험)

  • Kwon, Sei-Jin;Son, Yoon-Gyu;Suh, Jae-Hak;Lee, Woul-Woo;Jang, Sung-Duk;Oh, Jong-Seok;Whang, Jin-Su;Kang, Sin-Il;Kwon, O-Jung;Chung, Chin-Wha;Han, Kyung-Seop;Chun, Chung-Wan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.37-41
    • /
    • 2005
  • 풍력을 이용한 풍력발전기의 전력변환 시스템을 개발하기 위해서는 바람의 특성을 정확히 분석하고 이를 대치할 수 있는 모의시험 장치인 시뮬레이터가 필수적이다. 모의시험 장치는 풍향 풍속등의 인자들을 입력받아 회전자 블레이드의 토오크를 전동기가 대신해서 발전기에 공급하게 된다 본 논문에서는 풍력발전 모의시험 장치를 이용하여 750-kW gearless형 풍력발전기의 축소모델인 20-kW 모델 발전기와 고효율의 전력변환 장치 설계 및 인버터 특성을 위한 시험용 지그에서의 시험한 결과를 보이고자 한다.

  • PDF

Simulator System for 2MW Wind Turbine (2MW 풍력발전 시뮬레이터 시스템)

  • Choi, Hyo-jin;Gil, Kye-hwan;Kim, Yung-chan;Chun, Chin-wha
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.546-549
    • /
    • 2009
  • 풍력을 이용한 풍력발전기의 효율적 전력변환 시스템을 연구개발하기 위해서는 바람의 특성을 실내에서 정확히 구현할 수 있는 모의시험장치인 시뮬레이터가 요구된다. 모의시험장치는 바람을 받아 회전하는 블레이드 대신 풍속 값을 입력하여 전동기가 발전기에 토오크(torque)를 공급하게 된다. 모의시험장치를 설계하고 구현에 있어서 중요한 요소는 블라인드의 관성시정수와 축소모델인 5.83kW 모델 발전기 설계제작 그리고 고효율의 전력변환장치 설계 및 인버터 특성 알고리즘 구현이다. 본 논문은 2MW Gearless형 풍력발전기 KBP-2000M을 400:1 축소하여 제작한 모의실험장치에 최고의 출력 파워를 얻도록 Pitch Control 알고리즘을 적용한 측정 결과를 소개한다.

  • PDF

Energy conversion topologies for utility-scale wind power generation system (중.대형급 풍력발전 시스템용 에너지 변환 방식에 대한 연구)

  • Jeong, Byoung-Chang;Lim, Jong-Yeon;Song, Seung-Ho;Kim, Yeong-Min;Rho, Do-Hwan;Kim, Dong-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.459-462
    • /
    • 2001
  • 최근 풍력 발전 시스템이 전세계적으로 관심을 끌고 있지만 국내에서 보유하고 있는 기술은 세계적 수준과 상당히 차이가 있다. 다행히 풍력 발전 시스템의 발전 방향이 철강, 철도등의 대용량 가변속 구동시스템 개발 방향을 뒤따르고 있어서 우리나라도 관련기반 기술은 상당한 수준에 있다고 할 수 있다. 본 논문에서는 풍력 발전 시스템에 대한 각 방식별 특성을 고찰하고 분석하여 향후 연구에 도움이 될 수 있도록 이를 소개 하고자 한다.

  • PDF