• Title/Summary/Keyword: Wind loads

Search Result 938, Processing Time 0.029 seconds

A Study on the Slipping Problem for Cable-Membrane Structures (케이블-막구조물의 요소이동(slip)에 관한 연구)

  • Kim, Jae-Yeol;Kang, Joo-Won;Park, Sang-Min
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.5
    • /
    • pp.95-105
    • /
    • 2008
  • The objective of this study is find out the stressed condition, slipped direction and slipped dimension when some elements of cable-membrane structures are slipped from it's initially designed coordinates by external loads as wind or non uniform load and so on. In order to search the slipped behaviors of cable-membrane structures, a ALE finite element formulation is introduced. In these procedures, a stiffness matrix related with ALE concept is formulated and a FE analysis program for cable-membrane structures with slipped elements is developed.

  • PDF

Bending and shear stiffness optimization for rigid and braced multi-story steel frames

  • Gantes, C.J.;Vayas, I.;Spiliopoulos, A.;Pouangare, C.C.
    • Steel and Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.377-392
    • /
    • 2001
  • The response of multi-story building structures to lateral loads, mainly due to earthquake and wind, is investigated for preliminary design purposes. Emphasis is placed on structural systems consisting of rigid and braced steel frames. An attempt to gain a qualitative understanding of the influence of bending and shear stiffness distribution on the deformations of such structures is made. This is achieved by modeling the structure with a stiffness equivalent Timoshenko beam. It is observed that the conventional stiffness distribution, dictated by strength constraints, may not be the best to satisfy deflection criteria. This is particularly the case for slender structural systems with prevailing bending deformations, such as flexible braced frames. This suggests that a new approach to the design of such frames may be appropriate when serviceability governs. A pertinent strategy for preliminary design purposes is proposed.

Transient analysis of monopile foundations partially embedded in liquefied soil

  • Barari, Amin;Bayat, Mehdi;Saadati, Meysam;Ibsen, Lars Bo;Vabbersgaard, Lars Andersen
    • Geomechanics and Engineering
    • /
    • v.8 no.2
    • /
    • pp.257-282
    • /
    • 2015
  • In this study, the authors present a coupled fluid-structures-seabed interaction analysis of a monopile type of wind turbine foundations in liquefiable soils. A two dimensional analysis is performed with a nonlinear stiffness degradation model incorporated in the finite difference program Fast Lagrangian Analysis of Continua (FLAC), which captured the fundamental mechanisms of the monopiles in saturated granular soil. The effects of inertia and the kinematic flow of soil are investigated separately, to highlight the importance of considering the combined effect of these phenomena on the seismic design of offshore monopiles. Different seismic loads, such as those experienced in the Kobe, Santa Cruz, Loma Prieta, Kocaeli, and Morgan Hill earthquakes, are analyzed. The pore water pressure development, relative displacements, soil skeleton deformation and monopile bending moment are obtained for different predominant frequencies and peak accelerations. The findings are verified with results in the liter.

Application of lattice probabilistic neural network for active response control of offshore structures

  • Kim, Dong Hyawn;Kim, Dookie;Chang, Seongkyu
    • Structural Engineering and Mechanics
    • /
    • v.31 no.2
    • /
    • pp.153-162
    • /
    • 2009
  • The reduction of the dynamic response of an offshore structure subjected to wind-generated random ocean waves is of extreme significance in the aspects of serviceability, fatigue life and safety of the structure. In this study, a new neuro-control scheme is applied to the vibration control of a fixed offshore platform under random wave loads to examine the applicability of the proposed method. It is called the Lattice Probabilistic Neural Network (LPNN), as it utilizes lattice pattern of state vectors as the training data of PNN. When control results of the LPNN are compared with those of the NN and PNN, LPNN showed better performance in effectively suppressing the structural responses in a shorter computational time.

Element Level System Identification Method without Input Data (미지의 입력자료를 이용한 요소수준의 구조물 손상도 추정기법)

  • Cho, Hyo-Nam;Choi, Young-Min;Moon, Chang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.89-96
    • /
    • 1997
  • Most civil engineering structures, such as highway bridges, towers, power plants and offshore structures suffer structural damages over their service lives caused by adverse loading such as heavy transportation loads, machine vibrations, earthquakes, wind and wave forces. Especially, if excessive load would be acted on the structure, general or partial stiffness should be degraded suddenly and service lives should be shortened eventually For realistic damage assessment of these civil structures, System Identification method using only structure dynamic response data with unknown input excitation is required and thus becoming more challenging problem. In this paper, an improved Iterative Least Squares method is proposed, which seems to be very efficient and robust method, because only the dynamic response data such as acceleration, velocity and displacement is used without input data, and no information on the modal properties is required. The efficiency and robustness of the proposed method is proved by numerical problems and real single span beam model test.

  • PDF

Outrigger Systems for Tall Buildings in Korea

  • Chung, Kwangryang;Sunu, Wonil
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.3
    • /
    • pp.209-217
    • /
    • 2015
  • Outrigger systems are highly efficient since they utilize the perimeter zone to resist lateral forces, similar to tubular systems. The entire structural weight can be reduced due to the system's significant lateral strength. Therefore, it is the most commonly selected structural system for tall and supertall buildings built in recent years. In this paper, issues regarding the differential shortening effect during construction of the outrigger system and the special joints used to solve these issues will be addressed. Additionally, the characteristics of wind and seismic loads in Korea will be briefly discussed. Lastly, buildings in Korea using an outrigger as their major structural system will be introduced and the structural role of the system will be analyzed.

Passive vibration control of plan-asymmetric buildings using tuned liquid column gas dampers

  • Fu, Chuan
    • Structural Engineering and Mechanics
    • /
    • v.33 no.3
    • /
    • pp.339-355
    • /
    • 2009
  • The sealed, tuned liquid column gas damper (TLCGD) with gas-spring effect extends the frequency range of application up to about 5 Hz and efficiently increases the modal structural damping. In this paper the influence of several TLCGDs to reduce coupled translational and rotational vibrations of plan-asymmetric buildings under wind or seismic loads is investigated. The locations of the modal centers of velocity of rigidly assumed floors are crucial to select the design and the optimal position of the liquid absorbers. TLCGD's dynamics can be derived in detail using the extended non-stationary Bernoulli's equation for moving reference systems. Modal tuning of the TLCGD renders the optimal parameters by means of a geometrical transformation and in analogy to the classical tuned mass damper (TMD). Subsequently, fine-tuning is conveniently performed in the state space domain. Numerical simulations illustrate a significant reduction of the vibrations of plan-asymmetric buildings by the proposed TLCGDs.

Design Specifications of Cable Stayed Bridge Across Chambal River (참발강 횡단 사장교의 설계기준)

  • Kim, Mo-Seh;Yoo, Jun-Yeol;Cho, Eu-Kyeong;Lee, Sang-Min
    • Magazine of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.41-46
    • /
    • 2008
  • The bridge across Chambal River consists of two approach bridges and a cable stayed bridge with concrete girder and pylon. And the main bridge has been designed mainly based on AASHTO LRFD. This article covers design specifications from AASHTO LRFD, which are applied to load combinations and structural verification. And it also covers local standards applied in definition of loads such as live load, wind load, temperature, etc. In addition, the difference between applied design specifications and Korean standards is mentioned in this article briefly.

A Vibration Control of Building Structure using Neural Network Predictive Controller (신경회로망 예측 제어기를 이용한 건축 구조물의 진동제어)

  • Cho, Hyun-Cheol;Lee, Young-Jin;Kang, Suk-Bong;Lee, Kwon-Soon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.4
    • /
    • pp.434-443
    • /
    • 1999
  • In this paper, neural network predictive PID (NNPPID) control system is proposed to reduce the vibration of building structure. NNPPID control system is made up predictor, controller, and self-tuner to yield the parameters of controller. The neural networks predictor forecasts the future output based on present input and output of building structure. The controller is PID type whose parameters are yielded by neural networks self-tuning algorithm. Computer simulations show displacements of single and multi-story structure applied to NNPPID system about disturbance loads-wind forces and earthquakes.

  • PDF

Capacity Optimizing method of Distributed Generators in Stand-Alone Microgrid Considering Grid Link-Characteristics

  • Han, Soo-Kyeong;Choi, Hyeong-Jin;Cho, Soo-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1483-1493
    • /
    • 2018
  • Recently, more power facilities are needed to cope with the increasing electric demand. However, the additional construction of generators, transmission and distribution installations is not easy because of environmental problems and citizen's complaints. Under this circumstance, a microgrid system with distributed renewable resources emerges as an alternative of the traditional power systems. Moreover, the configuration of power system changes with more DC loads and more DC installations. This paper is written to introduce an idea of a genetic algorithm-based solution to determine the optimal capacity of the distributed generators depending on the types of system configuration: AC-link, DC-link and Hybrid-link types. In this paper, photovoltaic, wind turbine, energy storage system and diesel generator are considered as distributed generators and the feasibility of the proposed algorithm is verified by comparing the calculated capacity of each distributed resource with HOMER simulation results for 3 types of system configuration.