• Title/Summary/Keyword: Wind gust

Search Result 179, Processing Time 0.025 seconds

Efficient buffeting analysis under non-stationary winds and application to a mountain bridge

  • Su, Yanwen;Huang, Guoqing;Liu, Ruili;Zeng, Yongping
    • Wind and Structures
    • /
    • v.32 no.2
    • /
    • pp.89-104
    • /
    • 2021
  • Non-synoptic winds generated by tornadoes, downbursts or gust fronts exhibit significant non-stationarity and can cause significant wind load effect on flexible structures such as long-span bridges. However, conventional assumptions on stationarity used to evaluate the structural wind-induced vibration are inadequate. In this paper, an efficient frequency domain scheme based on fast CQC method, which can predict non-stationary buffeting random responses of long-span bridges, is presented, and then this approach is applied to evaluate the buffeting response of a long-span suspension bridge located in a complex mountainous wind environment as an example. In this study, the data-driven method based on one available measured wind speed sample is firstly presented to establish non-stationary wind models, including time-varying mean wind speed, time-varying intensity envelope function and uniformly modulated fluctuating spectrum. Then, a linear time-variant (LTV) system based on the proposed scheme can be generally applied to calculate the non-stationary buffeting responses. The effectiveness and accuracy of the proposed scheme are verified through Monte Carlo time domain simulation implemented in ANSYS platform. Also, the transient effect nature of the bridge responses is further illustrated by comparison of the non-stationary, quasistationary and steady-state cases. Finally, buffeting response analysis with traditional stationary treatment (10 min constant mean plus stationary wind fluctuation) is performed to illustrate the importance of the non-stationary characteristics embedded in original wind speed samples.

Wind loads on solar panels mounted parallel to pitched roofs, and acting on the underlying roof

  • Leitch, C.J.;Ginger, J.D.;Holmes, J.D.
    • Wind and Structures
    • /
    • v.22 no.3
    • /
    • pp.307-328
    • /
    • 2016
  • This paper describes an investigation of the net wind loads on solar panels and wind loads on the underlying roof surface for panels mounted parallel to pitched roofs of domestic buildings. Typical solar panel array configurations were studied in a wind tunnel and the aerodynamic shape factors on the panels were put in a form appropriate for the Australian/New Zealand Wind Actions Standard AS/NZS 1170.2:2011. The results can also be used to obtain more refined design data on individual panels within an array. They also suggest values for the aerodynamic shape factors on the roof surface under the panels, based on a gust wind speed at roof height, of ${\pm}0.5$ for wind blowing parallel to the ridge, and ${\pm}0.6$ for wind blowing perpendicular to the ridge. The net loads on solar arrays in the middle portion of the roof are larger than those on the same portion of the roof without any solar panels, thus resulting in increased loads on the underlying roof structure.

Field measurement results of Tsing Ma suspension Bridge during Typhoon Victor

  • Xu, Y.L.;Zhu, L.D.;Wong, K.Y.;Chan, K.W.Y.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.6
    • /
    • pp.545-559
    • /
    • 2000
  • A Wind and Structural Health Monitoring System (WASHMS) has been installed in the Tsing Ma suspension Bridge in Hong Kong with one of the objectives being the verification of analytical processes used in wind-resistant design. On 2 August 1997, Typhoon Victor just crossed over the Bridge and the WASHMS timely recorded both wind and structural response. The measurement data are analysed in this paper to obtain the mean wind speed, mean wind direction, mean wind inclination, turbulence intensity, integral scale, gust factor, wind spectrum, and the acceleration response and natural frequency of the Bridge. It is found that some features of wind structure and bridge response are difficult to be considered in the currently used analytical process for predicting buffeting response of long suspension bridges, for the Bridge is surrounded by a complex topography and the wind direction of Typhoon Victor changes during its crossing. It seems to be necessary to improve the prediction model so that a reasonable comparison can be performed between the measurement and prediction for long suspension bridges in typhoon prone regions.

Proposed large-scale modelling of the transient features of a downburst outflow

  • Lin, W.E.;Orf, L.G.;Savory, E.;Novacco, C.
    • Wind and Structures
    • /
    • v.10 no.4
    • /
    • pp.315-346
    • /
    • 2007
  • A preceding companion article introduced the slot jet approach for large-scale quasi-steady modelling of a downburst outflow. This article extends the approach to model the time-dependent features of the outflow. A two-dimensional slot jet with an actuated gate produces a gust with a dominant roll vortex. Two designs for the gate mechanism are investigated. Hot-wire anemometry velocity histories and profiles are presented. As well, a three-dimensional, subcloud numerical model is used to approximate the downdraft microphysics, and to compute stationary and translating outflows at high resolution. The evolution of the horizontal and vertical velocity components is examined. Comparison of the present experimental and numerical results with field observations is encouraging.

A forensic study of the Lubbock-Reese downdraft of 2002

  • Holmes, J.D.;Hangan, H.M.;Schroeder, J.L.;Letchford, C.W.;Orwig, K.D.
    • Wind and Structures
    • /
    • v.11 no.2
    • /
    • pp.137-152
    • /
    • 2008
  • This paper discusses engineering aspects of the rear-flank downdraft that was recorded near Lubbock, Texas on 4 June 2002, and produced a gust wind speed nearly equal to the design value (50-year return period) for the region. The general characteristics of the storm, and the decomposition of the time histories into deterministic 'running mean' and random turbulence components are discussed. The fluctuating wind speeds generated by the event can be represented as a dominant low-frequency 'running mean' with superimposed random turbulence of higher frequencies. Spectral and correlation characteristics of the residual turbulence are found to be similar to those of high-frequency turbulence in boundary-layer winds. However, the low-frequency components in the running-mean wind speeds are spatially homogeneous, in contrast to the low-frequency turbulence found in synoptic boundary-layer winds. With respect to transmission line design, this results in significantly higher 'span reduction factors'.

An investigation of the wind statistics and extreme gust events at a rural site

  • Sterling, M.;Baker, C.J.;Richards, P.J.;Hoxey, R.P.;Quinn, A.D.
    • Wind and Structures
    • /
    • v.9 no.3
    • /
    • pp.193-215
    • /
    • 2006
  • This paper presents an analysis of wind velocity measurements obtained from four ultrasonic anemometers arranged in a vertical formation. The anemometers were located in a rural environment with a view to providing detailed information on the flow statistics of the lower part of the atmospheric boundary layer, particularly for the extreme wind events that are important in loading calculations. The data is analysed using both conventional analysis and conditional sampling. The latter is combined with wavelet analysis in order to provide a detailed analysis of the energy/frequency relationship of the extreme events. The work presented in this paper suggests that on average the extreme events occur as a result of the superposition of two independent mechanisms - large scale events that scale on the atmospheric boundary layer thickness and small scale events a few tens of metres in size.

Performance Evaluation of a Nonlinear Cable Damper for Stay Cables Using Wind Vibration Analysis (사장교 케이블의 풍진동 해석을 통한 비선형 댐퍼의 성능 검증)

  • Kim, Saang-Bum;Lee, Sung-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.603-606
    • /
    • 2007
  • Wind induced vibration of a stay cable with a nonlinear friction damper is investigated. Stay cables are likely to vibrate under several wind-related environments, and cable dampers can be used to suppress the excessive vibrations of stay cables. Conventional design of cable dampers are based on the equivalent modal damping achieved by the cable damper. However, the equivalent modal damping achieved by nonlinear dampers are depend on the vibration characteristics like the amplitude of the vibration. In this paper, not only the achieved equivalent modal damping, but also the vibration levels under gust wind are analyzed through the time domain buffeting analysis. Numerical simulation results show the efficacy of a nonlinear friction damper for suppressing the excessive vibration of a stay cable.

  • PDF

Fatigue of tubular steel lighting columns under wind load

  • Peil, U.;Behrens, M.
    • Wind and Structures
    • /
    • v.5 no.5
    • /
    • pp.463-478
    • /
    • 2002
  • Lighting and traffic signal columns are mainly stressed by excitation due to natural, gusty wind. Such columns typically have a door opening about 60 cm above ground level for the connection of the buried cable with the column's electric system. When the columns around this notch are inadequately designed, vibrations due to gusty winds will produce considerable stress amplitudes in this area, which lead to fatigue cracks. To give a realistic basis for a reliable and economic design of lighting and traffic signal columns, a number of experimental and theoretical investigations have been made. The proposed design concept allows the life of such columns to be assessed with a satisfactory degree of accuracy.

Experimental study to assess the aerodynamic effects for conventional train passage on station platform (기존선 열차가 승강장을 통과할 때 발생하는 공기역학적인 문제들에 대한 기초실험 연구)

  • Kim, Dong-Hyeon;Shin, Min-Ho;Kwon, Hyun-Goo;Song, Moon-Shuk
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1875-1880
    • /
    • 2003
  • Measurements of wind flow and pressure fluctuations induced by train passing on station platform have been conducted. Test conventional trains have a different nose shapes - bluff nose and wedged nose. The bluff nose train influence peak value of pressure fluctuations on station platform three times more than the wedged nose train for train speed of 108 km/h. Also, air flow induced by the bluff nose train passing is three times more than the wedged nose train passing. Current study shows that the gust induced by the bluff nose conventional train may threaten a passenger's safety on station platform in proximity to train passage.

  • PDF

Numerical study on dynamics of a tornado-like vortex with touching down by using the LES turbulence model

  • Ishihara, Takeshi;Liu, Zhenqing
    • Wind and Structures
    • /
    • v.19 no.1
    • /
    • pp.89-111
    • /
    • 2014
  • The dynamics of a tornado-like vortex with touching down is investigated by using the LES turbulence model. The detailed information of the turbulent flow fields is provided and the force balances in radial and vertical directions are evaluated by using the time-averaged axisymmetric Navier-Stokes equations. The turbulence has slightly influence on the mean flow fields in the radial direction whereas it shows strong impacts in the vertical direction. In addition, the instantaneous flow fields are investigated to clarify and understand the dynamics of the vortex. An organized swirl motion is observed, which is the main source of the turbulence for the radial and tangential components, but not for the vertical component. Power spectrum analysis is conducted to quantify the organized swirl motion of the tornado-like vortex. The gust speeds are also examined and it is found to be very large near the center of vortex.