• Title/Summary/Keyword: Wind energy generation

Search Result 657, Processing Time 0.022 seconds

Development of a Cross-flow Type Vertical Wind Power Generation System for Electric Energy Generation Using Convergent-Divergent Duct (축소-확대 유로에 적용한 횡류형 수직 풍력발전시스템의 개발)

  • Chung, Sang-Hoon;Chung, Kwang-Seop;Kim, Chul-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.8
    • /
    • pp.543-548
    • /
    • 2011
  • New concept of wind energy conversion system is proposed to increase the energy density at a given working space. The quality of wind for wind power generation is depend on its direction and speed. However, the quality is not good on land because wind direction is changeable all the time and the speed as well. The most popularly operated wind turbine system is an axial-flow free turbine. But its conversion efficiency is less than 30% and even less than 20% considering the operating time. In this research, a cross-flow type wind turbine system is proposed with a convergent-divergent duct system to accelerate the low speed wind at the inlet of the wind turbine. Inlet guide vane is also introduced to the wind turbine system to have continuous power generation under the change of wind direction. In here, the availability of wind energy generation is evaluated with the change of the size of the inlet guide vane and the optimum geometry of the turbine impeller blade was found for the innovative wind power generation system.

Simulation of the Wind Power Generation System with Energy Storage System (전기저장 장치가 포함된 풍력발전 시스템에 대한 시뮬레이션)

  • Oh, Si-Doek;Lim, Hee-Sue;Seo, Seok-Ho;Kim, Ki-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.303-306
    • /
    • 2008
  • The wind power generation systems have a fluctuating or intermittent power output due to the variability of the wind speed. The amount of wind generation which can be connected to the grid without causing voltage stability problems is limited. In this study, the simulation of the wind power generation including energy storage system were performed to reduce the fluctuation of wind power output and to obtain the optimal operation planning of energy storage system.

  • PDF

A Study on the Characteristics of the Combined Generation System by Solar and Wind Energy with Power Storage Apparatus for the Geographical Features

  • Lim, Jung-Yeol;Kang, Byeong-bok;Cha, In-Su
    • Journal of Power Electronics
    • /
    • v.2 no.1
    • /
    • pp.11-18
    • /
    • 2002
  • The development of the solar and the wind energy is necessary since the future alternative energies that have no pollution and no limitation are restricted. Currently MW Class power generation system has been developed, but it still has a few faults with the weather condition. In order to solve these existing problems, combined generation system of photovoltaic and wind power was suggested. It combines wind power energy and solar energy to have the supporting effect from each other. However, since even combined generation system cannot always generate stable output with everchanging weather condition, power storage apparatus that uses elastic energy of spiral spring to combined generation system was also added for the present study.

Turbulence Intensity Effects on Small Wind Turbine Power Performance (난류강도가 소형 풍력발전기 출력에 미치는 영향)

  • Kim, Seokwoo
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.6
    • /
    • pp.19-25
    • /
    • 2013
  • Energy generation from an instrumented Skystream 3.7 small wind turbine was used to investigate the effect of ambient turbulence levels on wind turbine power output performance. It is widely known that elevated ambient turbulence level results in decreased energy production, especially for large sized wind turbine. However, over the entire wind speed range from cut in to the rated wind speed, the measured energy generation increased as ambient turbulence levels elevated. The impact degree of turbulence levels on power generation was reduced as measured wind speed approached to the rated wind speed of 13m/s.

A study on wind source interpolation based on shape of complex topography (복잡지형 형상에 따른 풍력자원 보정에 관한 연구)

  • Cheang, Eui-Heang;Moon, Chae-Joo;Kim, Eui-Sun;Chang, Young-Hak
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.62-68
    • /
    • 2009
  • There has been a continuous increase in the utilization and utility value of renewable energy such as wind power generation in modem society. Wind condition is the absolute variable to the energy volume in the case of a wind power generation system. For this reason, wind power generators have already been installed in areas where wind velocity is high and the possibility of danger is very low. In other words, instability is likely if the wind velocity in an area is high and where a wind power generation system can be built. On the contrary, low wind velocity is possible in an area with high stability. Therefore, the design and manufacture of a wind power generation system should be carried out in a more complicated topography in order to secure a bigger market. This study examines and suggest how topography affects wind shear by analyzing the measured data in order to predict wind power generation more reliably.

Sub-Synchronous Range of Operation for a Wind Driven Double-Fed Induction Generator

  • Saleh, Mahmoud Abdel Halim;Eskander, Mona Naguib
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.72-78
    • /
    • 2010
  • In this paper the operation of a double-fed wound-rotor induction machine, coupled to a wind turbine, as a generator at sub-synchronous speeds is investigated. A novel approach is used in the analysis, namely, the rotor power flow approach. The conditions necessary for operating the machine as a double-fed induction generator (DFIG) are deduced. Formulae describing the factors affecting the range of sub-synchronous speeds within which generation occurs are deduced. The variations in the magnitude and phase angle of the voltage injected to the rotor circuit as the speed of the machine changes to achieve generation at the widest possible sub-synchronous speed range is presented. Also, the effect of the rotor parameters on the generation range is presented. The analysis proved that the generation range could increase from sub-synchronous to super-synchronous speeds, which increases the amount of energy captured by the wind energy conversion system (WECS) as result of utilizing the power available in the wind at low wind speeds.

Performance Evaluation of Vertical Wind Power Generation System Structured on the Downtown Buildings Roof (도심 빌딩 옥상에 적용 가능한 풍력발전시스템의 성능 평가 연구)

  • Nah, Chae-Moon;Chung, Kwang-Seop;Kim, Young-Il;Kim, Dong-Hyeok
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.3
    • /
    • pp.9-16
    • /
    • 2016
  • This study had the purpose on feasibility judgment through performance forecast of wind power generation system using the cross flow vertical type wind power turbine for the situation of domestic small size wind power technology development. Wind power generation system uses the principle of venturi tube that gathers the wind through the first guide vane, and second guide vein changes the angle of the wind simultaneously by playing the role of venturi tube. After this, wind got out from the second guide vane spins the wind power turbine and has the meaning of judging on the aspect of numerical interpretation the feasibility for the small size wind power generation through wind power generation system that comes out from the back.

Power Output Control of Wind Generation System Through Energy Storage System and STATCOM (에너지저장장치 및 STATCOM을 이용한 풍력발전시스템의 출력제어 기법)

  • Kim, Jong-Yul;Park, June-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1718-1726
    • /
    • 2010
  • Utilization of renewable energy is becoming increaingly important from the viewpoints of environmental protection and conservation of fossil fuel. However, the generating power of renewable energy is always fluctuating due to the environmental status. This paper presents a scheme for supervisory control of wind generation system with the energy storage and STATCOM to reduce the power variation. In this paper, we especially concentrate on constant power output control of wind generation system. In order to achieve this purpose, the coordinated control strategy between different types of energy storage system and reactive power compensation device. The proposed control scheme has been validated by PSCAD/EMTDC simulation. As a result, the proposed scheme can handle the power output of wind generation system with a constant value.

Analysis of Wind Energy Potential on the West Coast of South Korea Using Public Data from the Korea Meteorological Administration (기상청 공공데이터를 활용한 대한민국 서해안 일대의 바람자원 분석)

  • Sangkyun Kang;Sung-Ho Yu;Sina Hadadi;Dae-Won Seo;Jungkeun Oh;Jang-Ho Lee
    • Journal of Wind Energy
    • /
    • v.14 no.3
    • /
    • pp.14-24
    • /
    • 2023
  • The significance of renewable energy has been on the rise, as evidenced by the 3020 renewable energy plan and the 2050 carbon neutrality strategy, which seek to advance a low-carbon economy by implementing a power supply strategy centered around renewable energy sources. This study examines the wind resources on the west coast of South Korea and confirms the potential for wind power generation in the area. Wind speed data was collected from 22 automatic weather system stations and four light house automatic weather system stations provided by the Korea Meteorological Administration to evaluate potential sites for wind farms. Weibull distribution was used to analyze the wind data and calculate wind power density. Annual energy production and capacity factors were estimated for 15-20 MW-class large wind turbines through the height correction of observed wind speeds. These findings offer valuable information for selecting wind power generation sites, predicting economic feasibility, and determining optimal equipment capacity for future wind power generation sites in the region.

Voltage and Transient State Analysis of Distribution Line connected to Wind Power Generation (풍력발전이 연계된 배전선로 전압 및 과도상태 해석)

  • Kim, Se-Ho;Na, Kyoung-Yoon;Kim, Gun-Hoon
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.2
    • /
    • pp.61-67
    • /
    • 2006
  • The use of the wind energy resource is a rapidly growing area world-wide. The number of installed units is continuously increasing, and therefore, it is important to respect and to deal with the impact of wind power generation system. From the view of an electric grid utility, there is a major problem with the impact of the wind system on the voltage of the electric grid, to which a turbine is connected. In this paper, it is investigated the voltage impact and transient state analysis on distribution line, with which wind power generation system is connected. Connections of wind power system usually occur to voltage drop due to reactive power absorption and sometime result in higher than nominal voltage.