• Title/Summary/Keyword: Wind design

Search Result 2,601, Processing Time 0.03 seconds

Resource Assessment and Engineering Design for Wind Energy Development (풍력에너지 개발을 위한 자원평가 및 엔지니어링 설계)

  • Kim, Seong-Kook
    • Journal of the Korean Professional Engineers Association
    • /
    • v.42 no.1
    • /
    • pp.49-53
    • /
    • 2009
  • Wind energy development and wind farm construction request multi-disciplinary study and coordination to pursuit economically and technically feasible project that may deliver a viable business model. This paper is to provide the study and coordination procedure with key management factors about the wind energy resource assessment and engineering design for EPC(Engineering, Procurement and Construction) contract for the successful business development.

  • PDF

Design Development Test for Composite Wind Turbine Blade (풍력발전기용 복합재 윈드터빈 블레이드의 설계 개발 시험)

  • Lee Chung-Hun;Jung Sung-Hoon;Park Ji-Sang;Kim Tae-Wook
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.22-25
    • /
    • 2004
  • This paper describes method and procedure for DDT (Design Development Test) of composite wind turbine blade composites. The test type of DDT is bending test, such as cantilever beam, based on the rated wind speed of wind power generation system. DDT was carried out in order to compare with the result of FEM analysis, characterize structural stability, verify manufacturing process and review test method of full scale blade.

  • PDF

Aerodynamic Damping Analysis of a Vane-type Multi-Function Air Data Probe

  • Lee, Yung-Gyo;Park, Young-Min
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.99-104
    • /
    • 2013
  • Configuration design, analysis, and wind tunnel test of a vane-type multi-function air data probe (MFP) was described. First, numerical analysis was conducted for the initial configuration of the MFP in order to investigate aerodynamic characteristics. Then, the design was modified to improve static and dynamic stability for better response characteristics. The modified configuration design was verified through wind tunnel tests. The test results are also used to verify the accuracy of the analytical method. The analytically estimated aerodynamic damping provided by the Navier-Stokes equation solver correlated well with the wind tunnel test results. According to the calculation, the damping coefficient estimated from ramp motion analysis yielded a better correlation with the wind tunnel test than pitch oscillation analysis.

Seismic Perfomance Evaluation of Wind-Designed Steel Highrise Buildings Based on Linear Dynamic Analysis (내풍설계된 철골조 초고층건물의 선형동적해석에 의한 내진성능평가)

  • Lee Cheol-Ho;Kim Seon-Woong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.652-659
    • /
    • 2005
  • Even in moderate to low seismic regions like Korean peninsular where wind loading usually governs the structural design of a tall building, the probable structural impact of the design basis earthquake or the maximum credible earthquake on the selected structural system should be considered at least in finalizing the design. In this study, by using response spectrum analysis and linear time history analysis method, seismic performance evaluation was conducted for wind-designed concentrically braced steel highrise buildings. Both spectrum-compatible artificial accelerograms and recorded accelerograms were used as input ground motions for the time history analysis. The analysis results showed that wind-designed concentrically braced steel highrise buildings possess significantly increased elastic seismic capacity due to the system overstrength resulting from the wind-serviceability criterion and the width-to-thickness ratio limits on steel members. Time history analysis results generally tended to underestimate the seismic response as compared to those of response spectrum analysis.

  • PDF

A Study on Structural Design and Analysis of Large Scale and High Efficiency Blades for Wind Turbine System (대형급 고효율 풍력 발전 시스템 블레이드 구조 설계 및 해석 연구)

  • Kong, Changduk;Kim, Minwoong;Park, Hyunbum
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.4
    • /
    • pp.7-11
    • /
    • 2012
  • Recently, the renewable energy has been widely used as a wind energy and solar energy resource due to lack and environmental issues of the mostly used fossil fuel. In this situation, the interest in wind power has been risen as an important energy source. For this blade a high efficiency wind turbine blade was designed with the proposing aerodynamic design procedure, and a light and low cost composite structure blade was designed considering fatigue life. Structural analyses including load case study, stress, deformation, buckling, fatigue life and vibration analysis were performed using the Finite Element Method.

Analysis of Economic Feasibility and Suitability of Highrise Buildings Using Highstrength Steel (고강도 강재를 활용한 초고층건물의 경제성 및 적합성 분석)

  • Kim, Seonwoong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.197-204
    • /
    • 2017
  • This paper aims to analyze the economic feasibility and investigate the possibility of elastic seismic design of wind-designed highrise concentrically braced frames considering change of mechanical properties of Korean steel under the strong wind and the low seismicity in Korea. To this end, first, highrise concentrically braced frames were designed considering strong wind load. And then, analyses of the economics of them were performed. The seismic performance evaluation of wind-designed highrise buildings was conducted using the response spectrum analysis procedure. Analysis results show that it is possible to save up to approximately 90% of the amount of steel on the 10% increase in steel strength without serviceability. However, with serviceability, the design sectional area of the steel with relatively high strength tends to increment considerably because of the lateral stiffness due to reduction of the inertia moment and so on. This point might apply to limitation of the steel with high tensile yield strength.

A Study on Design and Test for Composite Blade of Small Scale Wind Turbine System (소형 풍력발전 시스템용 복합재 블레이드의 설계 및 시험에 관한 연구)

  • Kong Changduk;Bang Johyug;Park Jongha;Oh Kyungwon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.125-130
    • /
    • 2004
  • This study proposes a development for the l-kW class small wind turbine system, which is applicable to relatively low wind speed region like Korea and has the variable pitch control mechanism. In the aerodynamic design of the wind turbine blade, parametric studies were carried out to determine an optimum aerodynamic configuration which is not only more efficient at low wind speed but whose diameter is not much larger than similar class other blades. A light composite structure, which can endure effectively various loads, was newly designed. In order to evaluate the structural design of the composite blade, the structural analysis was performed by the finite element method. Moreover both structural safety and aerodynamic performance were verified through the prototype test.

  • PDF

Seismic Perfomance Evaluation of Wind-Designed Steel Highrise Buildings Based on Linear Dynamic Analysis (내풍설계된 철골조 초고층건물의 선형동적해석에 의한 내진성능평가)

  • Lee, Cheol-Ho;Kim, Seon-Woong
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.177-184
    • /
    • 2005
  • Even in moderate to low seismic regions like Korean peninsular where wind loading usually governs the structural design of a tall building, the probable structural impact of the design basis earthquake or the maximum credible earthquake on the selected structural system should be considered at least in finalizing the design. In this study, by using response spectrum analysis and time history analysis method, seismic performance evaluation was conducted for wind-designed concentrically braced steel highrise buildings. Input ensemble was normalized to be compatible with expected peak ground acceleration. The analysis results showed that wind-designed concentrically braced steel highrise buildings possess significantly increased elastic seismic capacity due to the system overstrength resulting from the wind-serviceability criterion and the width-to-thickness ratio limits on steel members. The time history analysis tended to significantly underestimated the seismic response as compared to response spectrum analysis. Further detailed studies regarding selection and scaling scheme of input ground motions is needed.

  • PDF

A Study on Design of Wind Turbine Blade and Aerodynamic Analysis (수평축 풍력터빈 블레이드의 공력해석 및 설계에 관한 연구)

  • Kim, J.H.;Kim, B.S.;Yoon, S.H.;Lee, Y.H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.631-638
    • /
    • 2003
  • The wind turbine blade is the equipment converted wind into electric energy. The effect of the blade has influence of the output power and efficiency of wind turbine. The design of blade is considered of lift-to-drag ratio, structure, a condition of process of manufacture and stable maximum lift coefficient, etc. This study is used the simplified method for design of the aerodynamic blade and aerodynamic analysis used blade element method. This process is programed by delphi-language. The program has any input values such as tip speed ratio, blade length, hub length, a section of shape and max lift-to-drag ratio. The program displays chord length and twist angle by input value and analyzes performance of the blade.

  • PDF

Optimal design of wind-induced vibration control of tall buildings and high-rise structures

  • Li, Qiusheng;Cao, Hong;Li, Guiqing;Li, Shujing;Liu, Dikai
    • Wind and Structures
    • /
    • v.2 no.1
    • /
    • pp.69-83
    • /
    • 1999
  • The most common used control device on tall buildings and high-rise structures is active and passive tuned mass damper (ATMD and TMD). The major advantages of ATMD and TMD are discussed. The existing installations of various passive/active control devices on real structures are listed. A set of parameter optimization methods is proposed to determine optimal parameters of passive tuned mass dampers under wind excitation. Simplified formulas for determining the optimal parameters are proposed so that the design of a TMD can be carried out easily. Optimal design of wind-induced vibration control of frame structures is investigated. A thirty-story tall building is used as an example to demonstrate the procedure and to verify the efficiency of ATMD and TMD with the optimal parameters.