• Title/Summary/Keyword: Wind climate

Search Result 610, Processing Time 0.032 seconds

Outbreaks of Yuzu Dieback in Goheung Area: Possible Causes Deduced from Weather Extremes

  • Kim, Kwang-Hyung;Kim, Gyoung Hee;Son, Kyeong In;Koh, Young Jin
    • The Plant Pathology Journal
    • /
    • v.31 no.3
    • /
    • pp.290-298
    • /
    • 2015
  • Starting in 2012, severe diebacks usually accompanied by abundant gum exudation have occurred on yuzu trees in Goheung-gun, Jeonnam Province, where severely affected trees were occasionally killed. On-farm surveys were conducted at 30 randomly-selected orchards located at Pungyang-myeon, Goheung-gun, and the resulting disease incidences were 18.5% and 39.6% for dieback and gumming symptoms, respectively. Black spots on branches and leaves also appeared on infected trees showing a typical dieback symptom. Morphological and molecular identifications of the isolated fungal organisms from lesions on the symptomatic leaves and branches revealed that they are identical to Phomopsis citri, known to cause gummosis. In order to find the reason for this sudden epidemic, we investigated the weather conditions that are exclusively distinct from previous years, hypothesizing that certain weather extremes might have caused the severe induction of pre-existing disease for yuzu. There were two extreme temperature drops beyond the yuzu's cold hardiness limit right after an abnormally-warm-temperature-rise during the winter of 2011-12, which could cause severe frost damage resulting in mechanical injuries and physiological weakness to the affected trees. Furthermore, there was an increased frequency of strong wind events, seven times in 2012 compared to only a few times in the previous years, that could also lead to extensive injuries on branches. In conclusion, we estimated that the possible damages by severe frost and frequent strong wind events during 2012 could cause the yuzu trees to be vulnerable to subsequent fungal infection by providing physical entries and increasing plant susceptibility to infections.

Meteorological Characteristics in the Ulsan Metropolitan Region: Focus on Air Temperature and Winds (울산지역의 기상 특성: 기온과 바람을 중심으로)

  • Oh, Inbo;Bang, Jin-Hee;Kim, Yangho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.2
    • /
    • pp.181-194
    • /
    • 2015
  • Spatial-temporal meteorological features of the Ulsan metropolitan region (UMR) were analyzed using observations and high-resolution numerical modeling. Long-term trend analysis (1970~2013) showed a significant increase of $0.033^{\circ}Cyr^{-1}$ in the 5-year moving average temperature, although detailed short-term features varied, whereas wind speed and relative humidity over the same period displayed clear decreases of $-0.007ms^{-1}$ and $-0.29%yr^{-1}$, respectively. These trends indicate the effects of regional climate change and urbanization in the UMR. Seasonal variations averaged for the most recent three years, 2011~2013, showed that temperatures in three different regions (urban/industrial, suburban, coastal areas) of the UMR had similar seasonality, but significant differences among them were observed for a certain season. Urban and industrial complex regions were characterized by relatively higher temperatures with large differences (max.: $3.6^{\circ}C$) from that in the coastal area in summer. For wind speed, strong values in the range from 3.3 to $3.9ms^{-1}$ occurred in the coastal areas, with large differences clearly shown between the three regions in September and October. Diurnal variations of temperature were characterized by pronounced differences during the daytime (in summer) or nighttime (in winter) between the three regions. Results from the WRF modeling performed for four months of 2012 showed large variations in gridaverage temperature and winds in the UMR, which displayed significant changes by season. Especially, a clear temperature rise in the urban center was identified in July ($0.6^{\circ}C$ higher than nearby urban areas), and overall, relatively weak winds were simulated over urban and inland suburban regions in all seasons.

Optimal Design of Submarine Pipeline for Intake and Discharge of Seawater Desalination Facilities (해수 담수화 설비의 취수 및 배출수 해저 배관 최적화 설계)

  • Choi, Gwangmin;Han, Inseop
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.599-609
    • /
    • 2017
  • Desalination plants have been recently constructed in many parts of the world due to water scarcity caused by population growth, industrialization and climate change. Most seawater desalination plants are designed with a submarine pipeline for intake and discharge. Submarine pipelines are installed directly on the bottom of the water body if the bottom is sandy and flat. Intake is located on a low-energy shoreline with minimal exposure to beach erosion, heavy storms, typhoons, tsunamis, or strong underwater currents. Typically, HDPE (High Density Polyethylene) pipes are used in such a configuration. Submarine pipelines cause many problems when they are not properly designed; HDPE pipelines can be floated or exposed to strong currents and wind or tidal action. This study examines the optimal design method for the trench depth of pipeline, analysis of on-bottom stability and dilution of the concentrate based on the desalination plant conducted at the Pacific coast of Peru, Chilca. As a result of this study, the submarine pipeline should be trenched at least below 1.8 m. The same direction of pipeline with the main wind is a key factor to achieve economic stability. The concentrate should be discharged as much as high position to yield high dilution rate.

Spatial and Temporal Features of PM10 Evolution Cycle in the Korean Peninsula (한반도내 미세먼지 발생주기의 시공간분포 특성)

  • Jang, Jae-Hoon;Lee, Hwa-Woon;Lee, Soon-Hwan
    • Journal of Environmental Science International
    • /
    • v.21 no.2
    • /
    • pp.189-202
    • /
    • 2012
  • Power spectral analysis for $PM_{10}$ observed at 10 cities in the Korean Peninsula from 2004 to 2010 was carried out to examine the spatial and temporal features of $PM_{10}$ evolution cycle. The power spectrum analysis proposed 9 typical cycles (0.5 day, 1day, 5.4day, 8~10day, 19~21day, 26day, 56day, 180day and 365day) for $PM_{10}$ evolution and the cycles are strongly associated with dilution and transportation due to the meterological influence. The spectrum intensity of 5.4day and 26day $PM_{10}$ evolution cycles mainly depend on the advection cycles of synoptic pressures system and long-term variation of climatological forcing, respectively. The intensity of $PM_{10}$ evolution with longer temporal cycles than one day tends to be stronger in La ni$\tilde{n}$a period in comparison with that in El ni$\tilde{n}$o period. Mean of typical intensity of $PM_{10}$ evolution in La ni$\tilde{n}$a period estimated to be 30% larger than El ni$\tilde{n}$o period. Thus the global scale meteorological phenomena such as El ni$\tilde{n}$o and La ni$\tilde{n}$a also can influence the variation of wind system in the Korean Peninsula and $PM_{10}$ evolution. but global scale forcing tends to influence different manner for $PM_{10}$ evolution in accordance with its temporal cycles.

Effect of an Urban Thermal Environment on the Air Quality in Two Cities

  • Lee, Kwi-Ok;Lee, Hwa-Woon;Lee, Hyun-Ju;Park, Jong-Kil;Jung, Woo-Sik
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.1
    • /
    • pp.29-40
    • /
    • 2011
  • In this study, the effects of an urban thermal environment on air quality were investigated using hourly surface weather observation data and air quality data over six summers from 2000 to 2005 in two cities on the Korean Peninsula. One, the city of Daegu, is representative of basin topography and the other, the city of Busan, represents a coastal area. It is known that the characteristics of an urban thermal environment are represented as an "urban heat island". Here, we focus on the nighttime urban thermal environment, which is called a "tropical night", during the summer. On tropical nights in Busan, the temperature and cloud cover levels were higher than on non-tropical nights. Wind speed did not appear to make a difference even on a tropical night. However, the frequency of southwestern winds from the sea was higher during tropical nights. The prevailing southwest winds in all areas meant an inflow of air from the sea. So at most of the air quality stations, the ozone concentration during tropical nights was lower than during non-tropical nights. In Daegu, the tropical nights had higher temperatures and cloud covers. Despite these higher temperatures, the ozone concentration during the tropical nights was lower than that on non-tropical nights at most of the air quality stations. This feature was caused by low irradiance, which in turn caused an increased cloud cover. Wind speed was stronger during the tropical nights and dispersed the air pollutants. These meteorological characteristics of the tropical nights reduced ozone concentrations in the Daegu Basin.

The Performance Assessment of Special Observation Program (ProbeX-2009) and the Analysis on the Characteristics of Precipitation at the Ulleungdo (울릉도 특별관측 수행평가 및 강수특성 분석)

  • Kim, Ki-Hoon;Kim, Yeon-Hee;Kim, Do-Woo;Chang, Dong-Eon
    • Atmosphere
    • /
    • v.21 no.2
    • /
    • pp.185-196
    • /
    • 2011
  • The performance assessment in radiosonde observation on the special observation program (ProbeX-2009) is performed and the characteristics of precipitation using Auto Weather System (AWS) and radiosonde data in 2009 at the Ulleungdo are investigated. The launching time, observation time, and maximum altitude of radiosonde are satisfied with the regulation from Korea Meteorological Administration (KMA) and World Meteorological Organization (WMO) but the duration of observational time of radiosonde is much shorter than that of the ProbeX-2007 because the altitude of launching site is higher than others in 2007. From the analysis of trajectories of radiosonde, most radiosondes at the Ulleungdo tend to move into the east because the westerly prevail at the middle latitude. However, when the Okhotsk high is expanded to the Korean peninsula and the north-westerly winds strengthen over the East Sea as the subtropical high is retreated, radiosonde tends to move into the south-west and south-east, respectively. Maximum distance appears at the end of observation level before May but the level of maximum distance is changed into 100 hPa after June because the prevailing wind direction is reversed from westerly to easterly at the stratosphere during summer time. The condition of precipitation was more correlated with the dynamic instability except Changma season. Precipitation in 2009 at the Ulleungdo occurred under the marine climate so that total precipitation amounts and precipitation intensity were increased and intensified during nighttime. The local environment favorable for the precipitation during nighttime was while the wind speed at the surface and the inflow from the shoreline were strengthened. Precipitation events also affected by synoptic condition but the localized effect induced by topography was more strengthened at the northern part of Ulleungdo.

Regional and Seasonal Distribution Properties of Airborne Chlorides in Jeju Island, South Korea (제주도 해안가 대기중 염분량의 지역적/계절적 분포 특성)

  • Jung, Jahe;Lee, Jong-Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.300-306
    • /
    • 2022
  • The distribution properties of airborne chlorides at the coasts of Jeju island were identified in this study. For this, Jeju island was divided into four regions-east, west, south, and north, and the airborne chlorides were investigated in those regions. And the regional and seasonal distribution properties of airborne chlorides were analyzed. Jeju island, which has a subtropical climate and is surrounded by ocean, has a great regional variation in the distribution properties of airborne chlorides, with a difference of more than 6 times between the eastern region, the highest region, and the southern region, the lowest region. In terms of seasonal properties, the airborne chlorides in eastern and western region were high in summer and fall, and in summer mainly due to typhoon. The airborne chlorides in northern region were high in winter due to the northwest wind, and the that of southern region were high in summer. Meanwhile, the airborne chlorides of Jeju island tends to be high compared to the eastern, western, and southern coasts of South Korea.

The Wave Power Generator on Small Ship for Charging Engine Start-Up Battery (엔진 시동용 소형선 탑재형 파력 발전 시스템)

  • Kisoo, Ryu;Sungjin, Kang;Byeongseok, Yu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.6
    • /
    • pp.439-446
    • /
    • 2022
  • Efforts to reduce carbon dioxide(CO2) emissions are being carried out due to climate environmental problems. Eco-friendly ships are also being developed, and various energy saving measures have been developed and applied. In ships, researches have been conducted in various fields such as electric propulsion system and energy saving devices. In addition, the development of ships using various renewable energy, such as kite using wind power and wind power generation, has been carried out. This paper proposes a plan to use renewable energy for ships by applying wave generators to small ships. In 2016, 130 small domestic ships drifted by sea due to discharge of starting storage batteries, and discharge cases accounted for the largest portion of the causes of domestic ship accidents. This is due to the excessive use of storage batteries for starting the main engine by departing in a weak storage battery state for small ships. Accordingly, two type wave power generators - opened flow wave power generator and enclosed vibrator type wave power generator - are developed for charging a starting storage battery when the ships are stationary at sea or port. Opened flow wave power generator utilizes the flow of fluid in the ship by using wave induced ship motion. Enclosed vibrator type wave power generator utilizes the pendulum kinetic energy located in a ship due to wave induced ship motion.

A Study on Sea Surface Temperature Changes in South Sea (Tongyeong coast), South Korea, Following the Passage of Typhoon KHANUN in 2023 (2023년 태풍 카눈 통과에 따른 한국 남해 통영해역 수온 변동 연구)

  • Jae-Dong Hwang;Ji-Suk Ahn;Ju-Yeon Kim;Hui-Tae Joo;Byung-Hwa Min;Ki-Ho Nam;Si-Woo Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.1
    • /
    • pp.13-19
    • /
    • 2024
  • An analysis of the coastal water temperature in the Tongyeong waters, the eastern sea of the South Sea of Korea, revealed that the water temperature rose sharply before the typhoon made landfall. The water temperature rise occurred throughout the entire water column. An analysis of the sea surface temperature data observed by NOAA(National Oceanic and Atmospheric Administration) satellites, indicated that sea water with a temperature of 30℃ existed in the eastern waters of the eastern South Sea of Korea before the typhoon landed. The southeastern sea of Korea is an area where ocean currents prevail from west to east owing to the Tsushima Warm Current. However, an analysis of the satellite data showed that seawater at 30℃ moved from east to west, indicating that it was affected by the Ekman transport caused by the typhoon before landing. In addition, because the eastern waters of the South Sea are not as deep as those of the East Sea, the water temperature of the entire water layer may remain constant owing to vertical mixing caused by the wind. Because the rise in water temperature in each water layer occurred on the same day, the rise in the bottom water temperature can be considered as owing to vertical mixing. Indeed, the southeastern sea of Korea is a sea area where the water temperature can rise rapidly depending on the direction of approach of the typhoon and the location of high temperature formation.

Studies on the Winter Damage of Tree Species by the Cold-dry Wind (임목(林木)의 동기(冬期) 한건풍(寒乾風) 피해(被害)에 관(關)한 연구(硏究))

  • Ma, Sang Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.40 no.1
    • /
    • pp.25-34
    • /
    • 1978
  • Trial and demonslative reforestations were planted by Korea German Management Project at Ulju district in 1976. The follow results that were investigated at spring time in 1977 showed the different situation of winter damage according to site condition and species. 1. Picea abies was completely dried out in this district and its reason was to be thought as a winter damage by cold-dry wind. 2. Cryptomeria japonica was seriously damaged in comparing with Chamaecyparis obtusa and very seriously damaged on the wind-exposured site. So these species are also unsuitable species like Picea abies in this district. 3. The resistance ranking to winter dry wind damage were Picea, Cryptomeria, Chamaecyparis, ${\times}$ Pinus rigitaeda. Pinus rigida, Larix leptolepis and Alnus hirsuta. The falling leave species like larch in this district during winter were thought in necessary to select as the planting species for almost very little winter damage. 4. ${\times}$ Pinus rigitaeda to be showed as a suitable species in this district were also seriously damaged on exposured site and, Pinus rigida and Larix were also attacked with small damage. The potassium-phosphorus fertilizer dressing plots had a trend to reduce this winter damage until some level. 5. The winter climate can be devided into 10 zone in order to evaluate the right or wrong of suitable on the exotic species. The Yongnam region in eastern side of Sobaik mountain are far drier than the Honam region in western side of Sobaik mountain during winter time. Picea abies, Cryptomeria and Chamaecyparis originated in the high humidity winter climate are to be thought to be more suitable in the Honam region than the Yongnam region. Specially the suitable site of Picea abies should be only found in the region with high humidity and much precipitation except the Yongnam region.

  • PDF