• 제목/요약/키워드: Wind buckling

검색결과 95건 처리시간 0.023초

풍력발전기용 대형 복합재 블레이드에 대한 구조 해석 및 사이징에 관한 연구 (Stress Analysis and Sizing for a Glass/Epoxy Composite Wind Turbine Blade)

  • 이충훈;박진무;홍순곤;박지상;김태욱
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.5-9
    • /
    • 2002
  • This paper presents a method and procedure for stress analysis and sizing in development of structures of a large composite wind turbine blade. Structural requirement of IEC standard was reviewed to set up appropriate analysis method and procedure. Several structural layouts were examined in a viewpoint of a large scale wind turbine blade. For the critical load cases, stress analysis were performed using finite element method. Stacking sequence and thickness of a laminate for each part and location were determined considering stress levels and producibility. Nonlinear geometric analysis was performed to check stability problem due to local buckling of a skin structures.

  • PDF

소형 풍력발전기 블레이드의 구조설계 및 충격손상 안전성 연구 (Investigation on Structural Design and Impact Damage for a Small Wind Turbine Blade)

  • 공창덕;최수현;박현범
    • 항공우주시스템공학회지
    • /
    • 제2권2호
    • /
    • pp.1-7
    • /
    • 2008
  • Recently the wind energy has been alternatively used as a renewable energy resource instead of the mostly used fossil fuel due to its lack and environmental issues. This work is to propose a structural design and analysis procedure for development of the low noise 100W class small wind turbine system which will be applicable to relatively low speed region like Korea and for the domestic use. Structural analysis including load cases, stress, deformation, buckling, vibration and fatigue life was performed using the Finite Element Method, the load spectrum analysis and the Miner rule. In order to evaluate the designed structure, the structural test was carried out and its test results were compared with the estimated results. In addition, the blade should be safe from the impact damage due to FOD(Foreign Object Damage) including the bird strike. In order to analize the bird strike penomena on the blade, MSC. Dytran was used, and the applied method Arbitrary Lagrangian-Eulerian was evalud by comparison with the previous study results.

  • PDF

1.5kW급 풍력발전기용 블레이드의 구조해석 및 구조시험 (Structural Analysis and Testing of 1.5kW Class Wind Turbine Blade)

  • 김홍관;이장호;장세명;강기원
    • 한국유체기계학회 논문집
    • /
    • 제13권4호
    • /
    • pp.51-57
    • /
    • 2010
  • This paper describes the structural design and testing for 1.5kW class wind turbine composite blade. In order to calculate the equivalent material properties rule-of-mixture is applied. Lay-up sequence, ply thickness and ply angle are designed to satisfy the requirements for structural integrity. Structural analysis by using commercial software ABAQUS is performed to assess the static, buckling and vibration response. And to verify the structural analysis and design, the full scale structural test in flapwise direction was performed under single point loading according to loading conditions calculated by the aerodynamic analysis and Case H (Parked wind loading) in IEC 61400-2.

풍력 블레이드에서 정적 이축하중 부하에 따른 거동 분석 (Analysis of Wind-Turbine Blade Behavior Under Static Dual-Axis Loads)

  • 손병직;허용학;김동진;김종일
    • 대한기계학회논문집A
    • /
    • 제36권3호
    • /
    • pp.297-304
    • /
    • 2012
  • 블레이드의 성능 평가를 위하여 실제 사용 환경과 근접한 하중 모사에 따른 이축 하중의 필요성이 제기되고 있으며, 본 본문에서는 이러한 이축 하중에 따른 블레이드의 거동을 해석하였다. 100kW급 풍력 블레이드를 대상으로 하였으며, ANSYS를 사용하여 정적거동을 분석하였다. 정적거동은 파손해석과 좌굴거동으로 분석하였으며, 파손 평가는 Puck이 제안한 파손 방정식을 이용하여 섬유 파손과 섬유간 파손 기준을 검토하였다. 이축하중의 하중비가 증가함에 따라 루트부 단면이 변하는 후연부와 루트에서 Z+ 3300~3600인 지점에서 응력이 상대적으로 크게 나타났다. 또한 이축 하중비가 증가함에 따라 블레이드 좌굴 지점이 루트부 쪽으로 이동되고 있음을 확인하였다. 따라서 블레이드의 사용 신뢰성을 검증하기 위해서는 이축 하중에 의한 시험이 요구되고 있음을 본 해석을 통해서 확인하였다.

Full scale test and alnalytical evaluation on flexural behavior of tapered H-section beams with slender web

  • Lee, Seong Hui;Choi, Sung Mo;Lee, E.T.;Shim, Hyun Ju
    • Steel and Composite Structures
    • /
    • 제8권5호
    • /
    • pp.389-402
    • /
    • 2008
  • In December 2005, one(A) of the two pre-engineered warehouse buildings in the port of K City of Korea was completely destroyed and the other(B) was seriously damaged to be demolished. Over-loaded snow and unexpected blast of wind were the causes of the accident and destructive behavior was brittle fracture caused by web local buckling and lateral torsional buckling at the flange below rafter. However, the architectural design technology of today based on material non-linear method does not consider the tolerances to solve the problem of such brittle fracture. So, geometric non-linear evaluation which includes initial deformation, width-thickness ratio, web stiffener and unbraced length is required. This study evaluates the structural safety of 4 models in terms of width-thickness ratio and unbraced length using ANSYS 9.0 with parameters such as width-thickness ratio of web, existence/non-existence of stiffener and unbraced length. The purpose of this study is to analyze destructive mechanism of the above-mentioned two warehouse buildings and to provide ways to promote the safety of pre-engineered buildings.

Nonlinear response history analysis and collapse mode study of a wind turbine tower subjected to tropical cyclonic winds

  • Dai, Kaoshan;Sheng, Chao;Zhao, Zhi;Yi, Zhengxiang;Camara, Alfredo;Bitsuamlak, Girma
    • Wind and Structures
    • /
    • 제25권1호
    • /
    • pp.79-100
    • /
    • 2017
  • The use of wind energy resources is developing rapidly in recent decades. There is an increasing number of wind farms in high wind-velocity areas such as the Pacific Rim regions. Wind turbine towers are vulnerable to tropical cyclones and tower failures have been reported in an increasing number in these regions. Existing post-disaster failure case studies were mostly performed through forensic investigations and there are few numerical studies that address the collapse mode simulation of wind turbine towers under strong wind loads. In this paper, the wind-induced failure analysis of a conventional 65 m hub high 1.5-MW wind turbine was carried out by means of nonlinear response time-history analyses in a detailed finite element model of the structure. The wind loading was generated based on the wind field parameters adapted from the cyclone boundary layer flow. The analysis results indicate that this particular tower fails due to the formation of a full-section plastic hinge at locations that are consistent with those reported from field investigations, which suggests the validity of the proposed numerical analysis in the assessment of the performance of wind-farms under cyclonic winds. Furthermore, the numerical simulation allows to distinguish different failure stages before the dynamic collapse occurs in the proposed wind turbine tower, opening the door to future research on the control of these intermediate collapse phases.

Research on aerodynamic force and structural response of SLCT under wind-rain two-way coupling environment

  • Ke, Shitang;Yu, Wenlin;Ge, Yaojun
    • Wind and Structures
    • /
    • 제29권4호
    • /
    • pp.247-270
    • /
    • 2019
  • Wind-resistant design of existing cooling tower structures overlooks the impacts of rainfall. However, rainstorm will influence aerodynamic force on the tower surface directly. Under this circumstance, the structural response of the super-large cooling tower (SLCT) will become more complicated, and then the stability and safety of SLCT will receive significant impact. In this paper, surrounding wind fields of the world highest (210 m) cooling tower in Northwest China underthree typical wind velocities were simulated based on the wind-rain two-way coupling algorithm. Next, wind-rain coupling synchronous iteration calculations were conducted under 9 different wind speed-rainfall intensity combinations by adding the discrete phase model (DPM). On this basis, the influencing laws of different wind speed-rainfall intensity combinations on wind-driving rain, adhesive force of rain drops and rain pressure coefficients were discussed. The acting mechanisms of speed line, turbulence energy strength as well as running speed and trajectory of rain drops on structural surface in the wind-rain coupling field were disclosed. Moreover, the fitting formula of wind-rain coupling equivalent pressure coefficient of the cooling tower was proposed. A systematic contrast analysis on its 3D distribution pattern was carried out. Finally, coupling model of SLCT under different working conditions was constructed by combining the finite element method. Structural response, buckling stability and local stability of SLCT under different wind velocities and wind speed-rainfall intensity combinations were compared and analyzed. Major research conclusions can provide references to determine loads of similar SLCT accurately under extremely complicated working conditions.

풍력발전용 하이브리드 타워 하중영향 및 경제성 분석 (Analysis of Load on the Hybrid Tower and Cost Effectiveness of the Wind Turbine)

  • 이승민;권대용;김용천;;박현철;정진화
    • 신재생에너지
    • /
    • 제6권4호
    • /
    • pp.50-60
    • /
    • 2010
  • With the development of wind industry, rated power of the wind turbine also increases gradually. Accordingly, size of the wind turbine tower is becoming larger. Tower base diameter of the 2MW wind turbine is about 4m. Larger tower is expected for 4MW or 5MW turbines. Due to limitation of transportation, new type of tower with smooth transportation and effective cost is needed. In this work, a hybrid tower consisting of steel and concrete is designed and analyzed. The optimum ratio of steel and concrete of the hybrid tower is calculated as well as the thickness of the concrete part. Different FE analysis including modal analysis, buckling analysis and static analysis are performed to check the design of hybrid tower comparing with the steel tower. Redesign is also expected after various analyses.

풍력발전 타워용 원형단면 강재 쉘의 극한휨강도 (Ultimate Flexural Strength of Cylindrical Steel Shell for Wind Tower)

  • 안준태;신동구
    • 한국강구조학회 논문집
    • /
    • 제27권1호
    • /
    • pp.109-118
    • /
    • 2015
  • 풍력발전 타워용 원형단면 강재 쉘에 대하여 재료 및 기하학적 비선형 유한요소법으로 극한휨강도 해석을 수행하였다. 쉘의 기하학적 초기변형, 반경 대 두께비, 적용 강종 등이 극한휨강도에 미치는 영향을 분석하였으며, Eurocode 3와 AISI 설계기준에 의한 설계휨강도와 유한요소해석으로 구한 극한휨강도를 비교하였다. 비선형 FE 해석에는 DNV-RP-C202에 제시된 쉘의 좌굴모드와 유로코드에 규정된 진원도 허용오차 및 용접에 의한 변형을 기하학적 초기 결함으로 고려하였다. 원통형 쉘의 반경 대 두께비는 60~210 범위를 고려하였으며 SM520과 HSB800 강재로 제작된 것으로 가정하였다.

Structural Design of Medium Scale Composite Wind Turbine Blade

  • Kong, Chang-Duk;Kim, Jong-Sik
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제1권1호
    • /
    • pp.92-102
    • /
    • 2000
  • In this study, the 750kW medium scale composite blade for the horizontal axis wind turbine system was designed and manufactured, and it was tested and evaluated by the specific structural test rig. In the test, it was found that local bucklings at the trailing edge of the blade and excessive deflections at the blade tip were happened. In order to solve these problems, the design of blade structure was modified. After improving the design, the abrupt change of deflection at the blade tip was reduced by smooth variation of the spar thickness and the local buckling was removed by extending the web length. The modified design was analyzed by the FEM, the safety and stability of the blade structure. And Fatigue life over 20 years was confirmed by using S-N linear damage method, Spera's method, etc.

  • PDF