• Title/Summary/Keyword: Wind Vibration

Search Result 994, Processing Time 0.023 seconds

Mechanism on suppression in vortex-induced vibration of bridge deck with long projecting slab with countermeasures

  • Zhou, Zhiyong;Yang, Ting;Ding, Quanshun;Ge, Yaojun
    • Wind and Structures
    • /
    • v.20 no.5
    • /
    • pp.643-660
    • /
    • 2015
  • The wind tunnel test of large-scale sectional model and computational fluid dynamics (CFD) are employed for the purpose of studying the aerodynamic appendices and mechanism on suppression for the vortex-induced vibration (VIV). This paper takes the HongKong-Zhuhai-Macao Bridge as an example to conduct the wind tunnel test of large-scale sectional model. The results of wind tunnel test show that it is the crash barrier that induces the vertical VIV. CFD numerical simulation results show that the distance between the curb and crash barrier is not long enough to accelerate the flow velocity between them, resulting in an approximate stagnation region forming behind those two, where the continuous vortex-shedding occurs, giving rise to the vertical VIV in the end. According to the above, 3 types of wind fairing (trapezoidal, airfoil and smaller airfoil) are proposed to accelerate the flow velocity between the crash barrier and curb in order to avoid the continuous vortex-shedding. Both of the CFD numerical simulation and the velocity field measurement show that the flow velocity of all the measuring points in case of the section with airfoil wind fairing, can be increased greatly compared to the results of original section, and the energy is reduced considerably at the natural frequency, indicating that the wind fairing do accelerate the flow velocity behind the crash barrier. Wind tunnel tests in case of the sections with three different countermeasures mentioned above are conducted and the results compared with the original section show that all the three different countermeasures can be used to control VIV to varying degrees.

A Study on Response Analysis by Transmission Error of Yaw Drive for 8 MW Large Capacity Wind Turbines (8 MW급 대용량 풍력발전기용 요 감속기 치합전달오차에 따른 응답해석에 관한 연구)

  • Seo-Won Jang;Se-Ho Park;Young-kuk Kim;Min-Woo Kim;Hyoung-Woo Lee
    • Journal of Wind Energy
    • /
    • v.15 no.1
    • /
    • pp.43-49
    • /
    • 2024
  • This study performed a response analysis according to the transmission error of the yaw drive. To perform the response analysis, the excitation source of the transmission error was modeled and the outer ring of the first stage bearing and the outer ring of the output shaft bearing were used as measurement positions. The response results were analyzed based on the vibration tolerance values of AGMA 6000-B96. As a result of the response of the first stage bearing outer ring, the maximum displacement of the first stage planetary gear system was 5.59 and the maximum displacement of the second to fourth stage planetary gear systems was 4.21 ㎛ , 3.13 ㎛ , and 25.6 ㎛ . In the case of the output shaft bearing outer ring, the maximum displacement of the first stage planetary gear system was 1.73 ㎛, and the maximum displacement of the second to fourth stage planetary gear system was 1.94 ㎛, 0.73 ㎛, and 2.03 ㎛. According to AGMA 6000-B96, the vibration tolerance of first stage is 17.5 ㎛, and the vibration tolerance of the second to fourth stages is 58 ㎛, 80 ㎛, and 375 ㎛, which shows that the vibration tolerance is satisfied and it is safe.

Wind load parameters and performance of an integral steel platform scaffold system

  • Zhenyu Yang;Qiang Xie;Yue Li;Chang He
    • Wind and Structures
    • /
    • v.36 no.4
    • /
    • pp.263-275
    • /
    • 2023
  • As a new kind of construction facility for high rise buildings, the integral steel platform scaffold system (ISPS) consisting of the steel skeleton and suspended scaffold faces high wind during the construction procedure. The lattice structure type and existence of core tubes both make it difficult to estimate the wind load and calculate the wind-induced responses. In this study, an aeroelastic model with a geometry scale ratio of 1:25 based on the ISPS for Shanghai Tower, with the representative square profile, is manufactured and then tested in a wind tunnel. The first mode of the prototype ISPS is a torsional one with a frequency of only 0.68 Hz, and the model survives under extreme wind speed up to 50 m/s. The static wind load and wind vibration factors are derived based on the test result and supplementary finite element analysis, offering a reference for the following ISPS design. The spacer at the bottom of the suspended scaffold is suggested to be long enough to touch the core tube in the initial status to prevent the collision. Besides, aerodynamic wind loads and cross-wind loads are suggested to be included in the structural design of the ISPS.

Coupling effects of vortex-induced vibration for a square cylinder at various angles of attack

  • Zheng, Deqian;Ma, Wenyong;Zhang, Xiaobin;Chen, Wei;Wu, Junhao
    • Wind and Structures
    • /
    • v.34 no.5
    • /
    • pp.437-450
    • /
    • 2022
  • Vortex-induced vibration (VIV) is a significant concern when designing slender structures with square cross sections. VIV strongly depends on structural dynamics and flow states, which depend on the conditions of the approaching flow and shape of a structure. Therefore, the effects of the angle of attack on the coupling effects of VIV for a square cylinder are expected to be significant in practice. In this study, the aerodynamic forces for a fixed and elastically mounted square cylinder were measured using wind pressure tests. Aerodynamic forces on the stationary cylinder are firstly discussed by comparisons of variation of statistical aerodynamic force and wind pressure coefficient with wind angle of attack. The coupling effect between the aerodynamic forces and the motion of the oscillating square cylinder by VIV is subsequently investigated in detail at typical wind angels of attack with occurrence of three typical flow regimes, i.e., leading-edge separation, separation bubble (reattachment), and attached flow. The coupling effect are illustrated by discussing the onset of VIV, characteristics of aerodynamic forces during VIV, and interaction between motion and aerodynamic forces. The results demonstrate that flow states can be classified based on final separation points or the occurrence of reattachment. These states significantly influence coupling effects of the oscillating cylinder. Vibration enhances vortex shedding, which creates strong fluctuations in aerodynamic forces. However, differences in the lock-in range, aerodynamic force, and interaction process for angles of attack smaller and larger than the critical angle of attack revealed noteworthy characteristics in the VIV of a square cylinder.

Prediction of skewness and kurtosis of pressure coefficients on a low-rise building by deep learning

  • Youqin Huang;Guanheng Ou;Jiyang Fu;Huifan Wu
    • Wind and Structures
    • /
    • v.36 no.6
    • /
    • pp.393-404
    • /
    • 2023
  • Skewness and kurtosis are important higher-order statistics for simulating non-Gaussian wind pressure series on low-rise buildings, but their predictions are less studied in comparison with those of the low order statistics as mean and rms. The distribution gradients of skewness and kurtosis on roofs are evidently higher than those of mean and rms, which increases their prediction difficulty. The conventional artificial neural networks (ANNs) used for predicting mean and rms show unsatisfactory accuracy in predicting skewness and kurtosis owing to the limited capacity of shallow learning of ANNs. In this work, the deep neural networks (DNNs) model with the ability of deep learning is introduced to predict the skewness and kurtosis on a low-rise building. For obtaining the optimal generalization of the DNNs model, the hyper parameters are automatically determined by Bayesian Optimization (BO). Moreover, for providing a benchmark for future studies on predicting higher order statistics, the data sets for training and testing the DNNs model are extracted from the internationally open NIST-UWO database, and the prediction errors of all taps are comprehensively quantified by various error metrices. The results show that the prediction accuracy in this study is apparently better than that in the literature, since the correlation coefficient between the predicted and experimental results is 0.99 and 0.75 in this paper and the literature respectively. In the untrained cornering wind direction, the distributions of skewness and kurtosis are well captured by DNNs on the whole building including the roof corner with strong non-normality, and the correlation coefficients between the predicted and experimental results are 0.99 and 0.95 for skewness and kurtosis respectively.

Aerodynamic Retrofit of Bridge and Energy Harvesting by Small Wind Turbines (소형 풍력발전기를 이용한 교량의 공력성능 개선 및 에너지 생산)

  • Kwon, Soon-Duck;Lee, Seongho;Lee, Hankyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.27-33
    • /
    • 2010
  • This study addresses a methodology to use small wind turbines for dual purposes, improving aerodynamic performance of flexible bridges and wind energy harvesting. A way to proper placement of small wind turbines on flexible bridges were proposed according on the analogy of conventional aerodynamic appendages. From the wind tunnel tests, it was found that the wind turbine attached like fairing was effective to reduce the vortex-induced vibration of bridge and the optimal spanwise interval of the wind turbine was 3-4.5 time of turbine diameter. Moreover the aerodynamic coefficients of the bridge were improved after installation of the wind turbines. Present results showed the general availability of wind turbine for improvement of aerodynamic performance and energy supply of flexible bridges although the capacity of wind power generation was strongly dependent on wind characteristics of the bridge site.

Rain-wind induced vibration of inclined stay cables -Part I: Experimental investigation and physical explanation

  • Cosentino, Nicola;Flamand, Olivier;Ceccoli, Claudio
    • Wind and Structures
    • /
    • v.6 no.6
    • /
    • pp.471-484
    • /
    • 2003
  • The rain-wind induced vibration of stays is a phenomenon discovered recently and not well explained yet. As it is influenced by a wide range of physical parameters (cable size and shape, wind speed, direction and turbulence, rain intensity, material repellency and roughness, cable weight, damping and pre-strain), this peculiar phenomenon is difficult to reproduce in laboratory controlled conditions. A successful wind tunnel experimental campaign, in which some basic physical quantities were measured, allowed an extensive analysis as to identify the parameters of the rain-wind induced excitation. The unsteady pressure field and water thickness around a cable model were measured under rainy-excited conditions. The knowledge of those parameters provided helpful information about the air-flow around the cable and allowed to clarify the physical phenomenon which produces the excitation.

Medium.Large Horizontal Axis Wind Turbine Noise Analysis Considering Blade Passing Frequency Noise and Retarded Time (블레이드 통과 주파수 소음과 지연시간을 고려한 중.대형 수평축 풍력발전기의 공력소음해석)

  • Kim, Hyun-Jung;Kim, Ho-Geon;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1490-1493
    • /
    • 2007
  • Aerodynamic noise generated from wind turbines is predicted by it's classified source mechanisms using computational method. BPF noise according to the blade passing motion, is modelled on monopole and dipole sources. They are predicted by Farassat 1A equation. Airfoil self noise and turbulence ingestion noise are modelled upon quadrupole sources and are predicted by semi-empirical formulas composed on the groundwork of Brooks et al. and Lowson. Retarded time is considered, not only in low frequency noise prediction but also in turbulence ingestion noise and airfoil self noise prediction. Wind turbine noise emission of a 3MW wind turbine and a 600 kW wind turbine, standing for large and middle sized wind turbines, is analyzed.

  • PDF

External Wind Noise Source Identification in Hyundai Aeroacoustic Wind Tunnel (현대 자동차 무향 풍동에서의 외부 소음원 파악 기술)

  • 정승균
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.34-40
    • /
    • 2001
  • Aeroacoustic technology to improve the acoustic comfort in high-speed became a major topic in vehicle development process. Although most of wind noise reduction and sound quality improvements are possible with full vehicle, the countermeasures should be applied at the early design stage. Acoustic holography technology was used to identify the external wind noise sources of a vehicle in Hyundai Aeroacoustic Wind Tunnel. Microphone self-noise reduction techniques and several reference microphone positions are investigated in order to obtain proper results.

  • PDF

Modeling Techniques for The Dynamic Characteristics Analysis of Drivetrain in Wind Turbine (풍력터빈 드라이브트레인의 동특성 해석을 위한 모델링 기법)

  • Lim, Dongsoo;Lee, Seungkyu;Yang, Bosuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.583-586
    • /
    • 2012
  • Wind turbine industry is booming and spending a lot on research for improving the performance of its present machines and increasing their capacity. Wind turbine requires service life of about 20 years and each canponents of wind turbine requires high durability, because installation and maintenance costs are more expensive than generated electricity by wind-turbine. So the design of wind turbine must be verified in various condition before production step. For this work, high reliability model for analysis is required. Drivetrain model is modeled by multibody dynamic modeling method. The model constituted with rotor blades, hub, main shaft, gear box, high speed shaft and generator. Natural frequency and torsional stiffness of drivetrain are calculated and analyzed.

  • PDF