• 제목/요약/키워드: Wind Turbine Rotor System

검색결과 184건 처리시간 0.024초

수직/수평축 통합형 풍력발전 시스템 (Dual Rotor Wind Turbine System)

  • 신찬;김지언;송승호;노도환;김동용;정성남
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.289-292
    • /
    • 2001
  • A Dual rotor turbines HAWT/VAWT combined wind turbine system that can drastically enhance the power production capability compared to conventional Single Rotor Turbine HAWT system. The combined system that takes advantage of strong point of both horizontal and vertical Axis wind turbine system developed by a venture firm : KOWINTEC of Chonbuk National University. The HAWT/VAWT hybrid system has been successfully field tested and commercial operation since Feb. 12, 2001 in Hae-chang rest park, Bu-an county near the Sae Man-Kum Sea Dike. This paper will briefly describe the field test results performance and a special aerodynamic structure with bevel-planetary gear box of Dual Rotor Wind Turbine system.

  • PDF

An Airborne Cycloidal Wind Turbine Mounted Using a Tethered Balloon

  • Hwang, In-Seong;Kang, Wang-Gu;Kim, Seung-Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권4호
    • /
    • pp.354-359
    • /
    • 2011
  • This study proposes a design for an airborne wind turbine generator. The proposed system comprises a cycloidal wind turbine adopting a cycloidal rotor blade system that is used at a high altitude. The turbine is mounted on a tethered balloon. The proposed system is relatively easier to be realized and stable. Moreover, the rotor efficiency is high, which can be adjusted using the blade pitch angle variation. In addition, the rotor is well adapted to the wind-flow direction change. This article proves the feasibility of the proposed system through a sample design for a wind turbine that produces a power of 30 kW. The generated wind power at 500 m height is nearly 3 times of that on the ground.

30kw급 수직/수평축 통합형 풍력발전 시스템 개발 (Development of 30kw HAWT/VAWT hybrid wind power system)

  • 신찬;김지언;임종연;송승호;노도환;김동용
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.203-206
    • /
    • 2001
  • A 30kw Dual rotor Turbines HAWT/VAWT combined wind turbine system that can drastically enhance the power production capability compared to conventional Single Rotor Turbine HAWT system. The combined system that takes advantage of strong point of both horizontal and vertical Axis wind turbine system developed by a venture firm KOWINTEC of Chonbuk national university. The HAWT/VAWT hybrid system has been successfully field tested and commercial operating since Feb. 12, 2001 in Hae-chang rest park, Bu-an county near the Sae Man-Kum Sea Dike. This paper will briefly describe the field test results performance and a special aerodynamic structure with bevel-planetary gear box of Dual Rotor Wind Turbine system.

  • PDF

MEXNEXT 풍력발전기 풍동 시험에 대한 풍동 영향 분석 (Wind tunnel effect analysis for MEXICO wind turbine model)

  • 신형기;임종수;장문석
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.59.1-59.1
    • /
    • 2011
  • In this research, CFD calculation was implemented to analyze wind tunnel effect or rotor experiment in wind tunnel. One case included model wind turbine and all wind tunnel geometries. The other case include only rotor and nacelle system. Star-CCM+ was used for CFD analysis and rigid body motion around rotor area was applied to simulate rotating rotor. As for turbulence model, K-omega SST was used. The results were compared in 15m/s inflow condition. These results shows a good agreement with the measurement. Then, the result without wind tunnel was slightly different to the result with wind tunnel. Thus, in the case of Mexnex wind tunnel measurement, the wind tunnel don't affect the measurement result. Then, this wind tunnel and rotor size ratio can be reference for wind tunnel experiment of wind turbine rotor.

  • PDF

가변 풍력발전 시스템의 최대출력 제어를 위한 Fuzzy 제어기 설계 (A Fuzzy Logic Controller Design for Maximum Power Extraction of Variable Speed Wind Energy Conversion System)

  • 김재곤;허욱열;김병륜
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권11호
    • /
    • pp.753-759
    • /
    • 2004
  • This paper presents a modeling and simulation of a fuzzy controller for maximum power extraction of a grid-connected wind energy conversion system with a link of a rectifier and an inverter. It discusses the maximum power control algorithm for a wind turbine and proposes, in a graphical form, the relationships of wind turbine output, rotor speed, power coefficient, tip-speed ratio with wind speed when the wind turbine is operated under the maximum power control. The control objective is to always extract maximum power from wind and transfer the power to the utility by controlling both the pitch angle of the wind turbine blades and the inverter firing angle. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation method. The simulation results performed on MATLAB will show the variation of generator's rotor angle and rotor speed, pitch angle, and generator output.

계통연계 풍력발전 시스템의 최대출력 제어를 위한 PI 제어기의 성능 분석 (Performance of PI Controller for Maximum Power Extraction of a Grid-Connected Wind Energy Conversion System)

  • 노경수;류행수
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권8호
    • /
    • pp.391-397
    • /
    • 2002
  • This paper presents a modeling and simulation of a PI controller for maximum power extraction of a grid-connected wind energy conversion system with a link of a rectifier and an inverter. It discusses the maximum power control algorithm fnr a wind turbine and proposes, in a graphical form, the relationships of wind turbine output, rotor speed, power coefficient, tip-speed ratio with wind speed when the wind turbine is operated under the maximum power control. The control objective is to always extract maximum power from wind and transfer the power to the utility by controlling both the Pitch angle of the wind turbine blades and the inverter firing angle. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation method. The simulation results performed on MATLAB will show the variation of generator's rotor angle and rotor speed, pitch angle, and generator output.

MW 규모 풍력 터빈의 기계적 하중 특성 해석 및 제어 (Mechanical Loads Analysis and Control of a MW Wind Turbine)

  • 남윤수;최한순
    • 한국정밀공학회지
    • /
    • 제27권9호
    • /
    • pp.26-33
    • /
    • 2010
  • A multi-MW wind turbine is a huge mechanical structure, of which the rotor diameter is more or less than 100 m. Rotor blades experience unsymmetric mechanical loads caused by the interaction of incoming wind with the tower and wind shear effect. These mechanical loads are transferred to the entire structure of the wind turbine and are known as the major reasons for shortening the life span of the wind turbine. Therefore, as the size of wind turbine gets bigger, the mitigation of mechanical loads becomes more important issue in wind turbine control system design. In this paper, a concept of an individual pitch control(IPC), which minimizes the mechanical loads of rotor blades, is introduced, and simulation results using IPC are discussed.

이중 로터 풍력발전 시스템 모델링 및 시뮬레이션에 관한 연구 (Dual-rotor Wind Turbine Generator System Modeling and Simulation)

  • 조윤모;노태수;민병문;이현화
    • 한국항공우주학회지
    • /
    • 제32권6호
    • /
    • pp.87-95
    • /
    • 2004
  • 본 논문에서는 로터 블레이드, 고/저속 회전축, 발전기, 기어 시스템 등 다수의 몸체가 서로 상대적인 운동을 하며 연결되어 있는 이중 로터 수평축 풍력발전 시스템을 다몸체 시스템으로 간주하고, 다몸체 역학을 이용한 풍력발전 시스템 모델링 기업을 제안하였다. 이를 기반으로 풍력발전 시스템의 성능 해석을 위한 시뮬레이션 소프트웨어 WINSIM을 개발하였고, 다양한 시뮬레이션을 통해 제안된 풍력발전 시스템의 과도 및 정상 상태 특성의 연구에 적용할 수 있음을 예시하였다.

풍력 발전기의 Rotor-Blades 회전체 시스템 공력 해석 (Analysis of Flows around the Rotor-Blades as Rotating Body System of Wind Turbine)

  • 김동진;곽승현;이경호
    • 한국해양공학회지
    • /
    • 제23권5호
    • /
    • pp.25-31
    • /
    • 2009
  • The most important component of wind turbine is rotor blades. The developing method of wind turbine was focused on design of rotor blade. By the way, the design of a rotating body is more decisive process in order to adjust the performance of wind turbine. For instance, the design allows the designer to specify the wind characteristics derived by topographical map. The iterative solver is then used to adjust one of the selected inputs so that the desired rotating performance which is directly related to power generating capacity and efficiency is achieved. Furthermore, in order to save the money for manufacturing the rotor blades and to decrease the maintenance fee of wind power generation plant, while decelerating the cut-in speed of rotor. Therefore, the design and manufacturing of rotating body is understood as a substantial technology of wind power generation plant development. The aiming of this study is building-up the profitable approach to designing of rotating body as a system for the wind power generation plant. The process was conducted in two steps. Firstly, general designing and it’s serial testing of rotating body for voltage measurement. Secondly, the serial test results above were examined with the CFD code. Then, the analysis is made on the basis of amount of electricity generated by rotor-blades and of cut-in speed of generator.