• 제목/요약/키워드: Wind Turbine Blade Section

검색결과 32건 처리시간 0.03초

Flutter study of flapwise bend-twist coupled composite wind turbine blades

  • Farsadi, Touraj;Kayran, Altan
    • Wind and Structures
    • /
    • 제32권3호
    • /
    • pp.267-281
    • /
    • 2021
  • Bending-twisting coupling induced in big composite wind turbine blades is one of the passive control mechanisms which is exploited to mitigate loads incurred due to deformation of the blades. In the present study, flutter characteristics of bend-twist coupled blades, designed for load alleviation in wind turbine systems, are investigated by time-domain analysis. For this purpose, a baseline full GFRP blade, a bend-twist coupled full GFRP blade, and a hybrid GFRP and CFRP bend-twist coupled blade is designed for load reduction purpose for a 5 MW wind turbine model that is set up in the wind turbine multi-body dynamic code PHATAS. For the study of flutter characteristics of the blades, an over-speed analysis of the wind turbine system is performed without using any blade control and applying slowly increasing wind velocity. A detailed procedure of obtaining the flutter wind and rotational speeds from the time responses of the rotational speed of the rotor, flapwise and torsional deformation of the blade tip, and angle of attack and lift coefficient of the tip section of the blade is explained. Results show that flutter wind and rotational speeds of bend-twist coupled blades are lower than the flutter wind and rotational speeds of the baseline blade mainly due to the kinematic coupling between the bending and torsional deformation in bend-twist coupled blades.

Aeroelastic deformation and load reduction of bending-torsion coupled wind turbine blades

  • Shaojun, Du;Jingwei, Zhou;Fengming, Li
    • Wind and Structures
    • /
    • 제35권5호
    • /
    • pp.353-368
    • /
    • 2022
  • Wind turbine blades are adjusted in real-time according to the wind conditions and blade deformations to improve power generation efficiency. It is necessary to predict and reduce the aeroelastic deformations of wind turbine blades. In this paper, the equivalent model of the blade is established by the finite element method (FEM), and the aerodynamic load of the blade is evaluated based on the blade element momentum (BEM) theory. The aeroelastic coupling model is established, in which the bending-torsion coupling effect of the blade is taken into account. The steady and dynamic aeroelastic deformations are calculated. The influences of the blade section's shear centre position and the blade's sweepback design on the deformations are analyzed. The novel approaches of reducing the twist angle of the blade by changing the shear centre position and sweepback of the blade are presented and proven to be feasible.

풍력터빈용 날개 설계 및 공력해석에 관한 연구 (A Study on Aerodynamic Analysis and Design of Wind Turbine Blade)

  • 김정환;이영호;최민선
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권5호
    • /
    • pp.847-852
    • /
    • 2004
  • The wind turbine blade is the equipment converted wind into electric energy. The effect of the blade has influence of the output power and efficiency of wind turbine. The design of blade is considered of lift-to-drag ratio. structure. a condition of process of manufacture and stable maximum lift coefficient, etc. This study is used the simplified method for design of the aerodynamic blade and aerodynamic analysis used blade element method This Process is programed by delphi-language. The Program has any input values such as tip speed ratio blade length. hub length. a section of shape and max lift-to-drag ratio. The Program displays chord length and twist angle by input value and analyzes performance of the blade.

소형풍력발전기용 블레이드의 구조해석 및 설계 (Structural Analysis and Design of Small Wind Turbine Blade)

  • 최두순
    • 한국기계가공학회지
    • /
    • 제14권1호
    • /
    • pp.85-91
    • /
    • 2015
  • Wind turbine blades represent a key component of wind turbines, which extract energy from the wind. In the present study, the structural design of a small wind turbine blade is undertaken using a numerical analysis. The reliability of numerical results is verified through a comparison with the full-scale structural test data of a current blade. To modify the blade design, the blade was divided into several sections and the effect of the thickness of each section was investigated in a numerical analysis. Finally, the modified blade was designed with a lightweight and high-strength.

수평축 풍력터빈 블레이드의 공력해석 및 설계에 관한 연구 (A Study on Design of Wind Turbine Blade and Aerodynamic Analysis)

  • 김정환;김범석;윤수한;이영호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.631-638
    • /
    • 2003
  • The wind turbine blade is the equipment converted wind into electric energy. The effect of the blade has influence of the output power and efficiency of wind turbine. The design of blade is considered of lift-to-drag ratio, structure, a condition of process of manufacture and stable maximum lift coefficient, etc. This study is used the simplified method for design of the aerodynamic blade and aerodynamic analysis used blade element method. This process is programed by delphi-language. The program has any input values such as tip speed ratio, blade length, hub length, a section of shape and max lift-to-drag ratio. The program displays chord length and twist angle by input value and analyzes performance of the blade.

  • PDF

풍력터빈 성능시험을 위한 저속풍동 개념연구 (Conceptual Study of a Low-Speed Wind Tunnel for Performance Test of Wind Turbine)

  • 강승희
    • 한국항공운항학회지
    • /
    • 제19권4호
    • /
    • pp.24-29
    • /
    • 2011
  • Conceptual study of an open-circuit type low-speed wind tunnel for performance test of wind turbine blade and airfoil is conducted. The tunnel is constituted of a settling chamber, a contraction, closed test section, a diffuser, two corners, a cross leg and a fan and motor. For the performance test, the closed test section width of 1.8 m, height of 1.8 m and length of 5.25 m is selected. The contraction ratio is 9 to 1 and maximum speed in the test section is 67 m/sec. Input power in the tunnel is about 238 kW and its energy ratio is 3.6. The wind tunnel designed in present study will be an effective tool in research and development of wind turbine and airfoil.

원통캠 형상에 따른 틸팅식 풍력터빈의 성능에 관한 실험적 연구 (An Experimental Study on the Performance Characteristics of a Tilting-Type Wind Turbine According to Cylindrical Cam Shape)

  • 유환석;성재용
    • 한국지열·수열에너지학회논문집
    • /
    • 제17권1호
    • /
    • pp.23-32
    • /
    • 2021
  • Conventional wind power generators have limited installation sites due to low efficiency due to reverse resistance or high cut-in speed. To compensate for these problems, this study proposed another new type of tilting wind turbine. The key to this method is the structural design of a cylindrical cam with a guide groove that allows the blade to tilt. As the blade rotates by the cam, it tilts according to the angle. In the section that generates torque by receiving drag, the blade is made perpendicular to the wind. And it is a structure that creates a parallel state with the wind in the section where reverse resistance occurs. We prepared six types of cams considering the length of the section subject to drag, reverse resistance, tilting section. The performance was analyzed as the maximum value of the output, torque coefficient, and efficiency coefficient, which is indicated by setting different wind speed and low TSR.

풍력터빈 성능시험을 위한 풍동 개념연구 (Conceptual Design Study of a Low-Speed Wind Tunnel for Performance Test of Wind Turbine)

  • 강승희;최우람;김해정;김용휘
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.431-434
    • /
    • 2009
  • Conceptual study of an open-circuit type low-speed wind tunnel for test of wind turbine blade is conducted. The tunnel is constituted of a settling chamber, a contraction, closed and open test sections, a diffuser, two corners, a cross leg and a fan and motor. For the performance test, the closed test section width of 1.8 m, height of 1.8 m and length of 5.25 m is selected. The open test section with dimension width of 1.8 m, height of 1.8 m and length of 4.14 m is adopted for aeroacoustic test. The contraction ratio is 9 to 1 and maximum speed in the closed test section is 67 m/sec. Input power in the tunnel is about 238 kW and its energy ratio is 3.6. The wind tunnel designed in present study will be an effective tool in research and development of wind turbine.

  • PDF

다리우스 풍차의 회전각에 따른 순간 토오크 해석 (A Instantaneous Torque Analysis of the Darrieus Wind Turbine varying with the rotating Angle of blade)

  • 오철수;권순홍
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 B
    • /
    • pp.659-661
    • /
    • 1992
  • This paper deals with aerodynamic problems of the rotating blade of Darrieus wind turbine and its instantaneous torque. The instantaneous torque varying with the rotating angle of blade was obtained through resultant wind velocity, angle of attack, lift and drag coefficient. These are obtained from a given wing section, size and wind velocity.

  • PDF

복합재료 고전적층판 이론을 이용한 MW급 해상풍력 블레이드 구조설계 (Structural Design of Multi-Megawatt Wind Turbine Blade by Classical Lamination Theory)

  • 배성열;김범석;이상래;김우준;김윤해
    • 한국해양공학회지
    • /
    • 제28권2호
    • /
    • pp.147-151
    • /
    • 2014
  • This research presents a method for the initial structural design of a multi-megawatt wind turbine blade. The structural data for a 2-MW blade were applied as the blade structural characteristic data of the reference blade. Tenkinds of blade models were newly designed by replacing the spar cap axial GRRP with a GFRP and CFRP These terms should be defined. at different orientations. The axial stiffness coefficients of the newly designed models were made equal to the coefficient of the reference blade. The required numbers of layers in each section of blades were calculated, and the lay-up designs were based on these numbers. Verification results showed that the design method that used the structural data of the reference blade was appropriate for the initial structural design of a wind turbine blade.