• Title/Summary/Keyword: Wind Test

Search Result 1,784, Processing Time 0.025 seconds

Noise Test and Evaluation of a 750kW Wind Turbine Generator (750kW 풍력발전기의 소음실증)

  • Kim, Seock-Hyun;Heo, Wook;Lee, Hyun-Woo
    • Journal of Industrial Technology
    • /
    • v.27 no.B
    • /
    • pp.59-64
    • /
    • 2007
  • This study introduces an environmental noise evaluation procedure and results for a wind turbine (W/T) system. Test and evaluation are required by the international standard IEC 61400-11 in the aspect of environmental effect. Test and evaluation are performed on U-50 WT model which is first developed by the domestic W/T manufacturer. W/T test model is under operation in Daekwanryung wind test site. An integrated monitoring system in the test site is utilized for the evaluation. With the noise signal, meteorological data and W/T operational data are monitored in real time by the integrated monitoring system using LabVIEW. From the measured noise data, acoustic power level are estimated and compared with those of other similar size WT under the wind speeds required by international standard.

  • PDF

Load Measurements of 100 kW Wind Turbine (100 kW급 풍력발전기의 하중 측정)

  • Bae, Jae-Sung;Kim, Sung-One;Kyong, Nam-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.4
    • /
    • pp.27-33
    • /
    • 2004
  • Mechanical load measurements on blade and tower of Vestas 100 kW wind turbine has been reformed in Wollyong test site, Jeju island. The experimental procedure for the measurement of wind turbine loads, such as edgewise(lead-lag) bending moment, flapwise bending moment, and tower base bending moment, has been established. The test facilities consisting of strain-gauges, telemetry and T-Mon system are installed in the wind turbine. Strain gauges are on-site calibrated against load cell prior to monitoring the wind turbine loads. Using the test setup, the loads on the components are being measured and analysed for various external conditions of the wind turbine. A set of results for near rated wind speed has been presented in this paper.

Wind-rain-induced vibration test and analytical method of high-voltage transmission tower

  • Li, Hong-Nan;Tang, Shun-Yong;Yi, Ting-Hua
    • Structural Engineering and Mechanics
    • /
    • v.48 no.4
    • /
    • pp.435-453
    • /
    • 2013
  • A new computational approach for the rain load on the transmission tower is presented to obtain the responses of system subjected to the wind and rain combined excitations. First of all, according to the similarity theory, the aeroelastic modeling of high-voltage transmission tower is introduced and two kinds of typical aeroelastic models of transmission towers are manufactured for the wind tunnel tests, which are the antelope horn tower and pole tower. And then, a formula for the pressure time history of rain loads on the tower structure is put forward. The dynamic response analyses and experiments for the two kinds of models are carried out under the wind-induced and wind-rain-induced actions with the uniform and turbulent flow. It has been shown that the results of wind-rain-induced responses are bigger than those of only wind-induced responses and the rain load influence on the transmission tower can't be neglected during the strong rainstorm. The results calculated by the proposed method have a good agreement with those by the wind tunnel test. In addition, the wind-rain-induced responses along and across the wind direction are in the same order of response magnitude of towers.

The effects of topography on local wind-induced pressures of a medium-rise building

  • Hitchcock, P.A.;Kwok, K.C.S.;Wong, K.S.;Shum, K.M.
    • Wind and Structures
    • /
    • v.13 no.5
    • /
    • pp.433-449
    • /
    • 2010
  • Wind tunnel model tests were conducted for a residential apartment block located within the complex terrain of The Hong Kong University of Science and Technology (HKUST). The test building is typical of medium-rise residential buildings in Hong Kong. The model study was conducted using modelling techniques and assumptions that are commonly used to predict design wind loads and pressures for buildings sited in regions of significant topography. Results for the building model with and without the surrounding topography were compared to investigate the effects of far-field and near-field topography on wind characteristics at the test building site and wind-induced external pressure coefficients at key locations on the building facade. The study also compared the wind tunnel test results to topographic multipliers and external pressure coefficients determined from nine international design standards. Differences between the external pressure coefficients stipulated in the various standards will be exacerbated when they are combined with the respective topographic multipliers.

Airfoil Testing to Obtain Full-range Aerodynamic Characteristics based on Velocity Field Measurements Utilizing a Digital Wind Tunnel (익형의 전 범위 받음각에서 공력특성 시험이 가능한 디지털 풍동의 개발 및 속도장 측정)

  • Kang, Sangkyun;Kim, Jin-Ok;Kim, Yong-Su;Shin, Won-Sik;Lee, Sang-Il;Lee, Jang-Ho
    • New & Renewable Energy
    • /
    • v.18 no.3
    • /
    • pp.60-71
    • /
    • 2022
  • A wind tunnel provides artificial airflow around a model throughout the test section for investigating aerodynamic loads. It has various applications, which include demonstration of aerodynamic loads in the building, automobile, wind energy, and aircraft industries. However, owing to the high equipment costs and space-requirements of wind tunnels, it is challenging for numerous studies to utilize a wind tunnel. Therefore, a digital wind tunnel can be utilized as an alternative for experimental research because it occupies a significantly smaller space and is easily operable. In this study, we performed airfoil testing based on velocity field measurements utilizing a digital wind tunnel. This wind tunnel can potentially be utilized to test the full-range aerodynamic characteristics of airfoils.

Development of accelerated life test method for the wind turbine Gearbox using cumulative damage theory (누적손상이론을 이용한 풍력증속기의 가속수명시험법 개발)

  • Son, Ki-Su;Kwak, Hee-Sung;Kang, Change-Hoon;Cho, Jun-Haeng
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.693-697
    • /
    • 2005
  • This study was performed to develop accelerated life test method of the wind-turbine gearbox using accumulated damage theory that used to model the fatigue of parts that receive variable load. The accumulated damage theory was introduced, and the estimation of life and calculation of accelerated life test time was illustrated. As the actual application example, accelerated life test method of the gearbox was described. Life distribution of the wind-turbine gearbox was supposed to follow Weibull distribution and life test time was calculated under the conditions of average life (MTBF) 140,600 hours and 99% reliability for one test sample According to the accumulated damage theory, because test time can shorten in case increase test load, test time could be reduced by 1.2 years when we put the load 1.2 times of rated load than 0.93 times of rated load that is equivalent load calculated by load spectrum of the wind turbine. This time, acceleration coefficient was 21.3. This accelerated test method was used to develop accelerated test method of gear reducer, gear and bearing as well as the industrial gearbox and it is considered to be applied comprehensively to mechanical parts the fatigue of which is happened by load or pressure etc.

  • PDF

Numerical simulation and experimental study of non-stationary downburst outflow based on wall jet model

  • Yongli Zhong;Yichen Liu;Hua Zhang;Zhitao Yan;Xinpeng Liu;Jun Luo;Kaihong Bai;Feng Li
    • Wind and Structures
    • /
    • v.38 no.2
    • /
    • pp.129-146
    • /
    • 2024
  • Aiming at the problem of non-stationary wind field simulation of downbursts, a non-stationary down-burst generation system was designed by adding a nozzle and program control valve to the inlet of the original wall jet model. The computational fluid dynamics (CFD) method was used to simulate the downburst. Firstly, the two-dimensional (2D) model was used to study the outflow situation, and the database of working conditions was formed. Then the combined superposition of working conditions was carried out to simulate the full-scale measured downburst. The three-dimensional (3D) large eddy simulation (LES) was used for further verification based on this superposition condition. Finally, the wind tunnel test is used to further verify. The results show that after the valve is opened, the wind ve-locity at low altitude increases rapidly, then stays stable, and the wind velocity at each point fluctuates. The velocity of the 2D model matches the wind velocity trend of the measured downburst well. The 3D model matches the measured downburst flow in terms of wind velocity and pulsation characteris-tics. The time-varying mean wind velocity of the wind tunnel test is in better agreement with the meas-ured time-varying mean wind velocity of the downburst. The power spectrum of fluctuating wind ve-locity at different vertical heights for the test condition also agrees well with the von Karman spectrum, and conforms to the "-5/3" law. The vertical profile of the maximum time-varying average wind veloci-ty obtained from the test shows the basic characteristics of the typical wind profile of the downburst. The effectiveness of the downburst generation system is verified.

Effect of amplitude modulation in wind turbine noise on noise perception and annoyance (풍력 발전기 소음의 진폭변조가 소음 인지와 불쾌감에 미치는 영향)

  • Lee, Seung-Hoon;Kim, Kyu-Tae;Lee, Soo-Gab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.491-491
    • /
    • 2009
  • Wind turbines produce aerodynamic noise which fluctuate periodically at a blade passing frequency. This sound characteristic is called amplitude modulation, or swishing sound. Several previous studies claimed that this amplitude modulation has a possibility to increase noise annoyance. Thus, this study performed a listening test to find the relationship between the amplitude modulation in wind turbine noise on noise annoyance. The stimuli for the listening test was recorded from a 1.5MW wind turbine in Jeju island. The result of the listening test shows that the amplitude modulation in wind turbine noise significantly increase noise annoyance. Moreover, this study analytically examined the effect of amplitude modulation on noise perception. The result indicates that amplitude modulated sound can be easily perceived even though the background noise level is higher than the sound level of the signal.

  • PDF

Wind tunnel modeling of roof pressure and turbulence effects on the TTU test building

  • Bienkiewicz, Bogusz;Ham, Hee J.
    • Wind and Structures
    • /
    • v.6 no.2
    • /
    • pp.91-106
    • /
    • 2003
  • The paper presents the results of 1:50 geometrical scale laboratory modeling of wind-induced point pressure on the roof of the Texas Tech University (TTU) test building. The nominal (prevalent at the TTU site) wind and two bounding (low and high turbulence) flows were simulated in a boundary-layer wind tunnel at Colorado State University. The results showed significant increase in the pressure peak and standard deviation with an increase in the flow turbulence. It was concluded that the roof mid-plane pressure sensitivity to the turbulence intensity was the cause of the previously reported field-laboratory mismatch of the fluctuating pressure, for wind normal and $30^{\circ}$-off normal to the building ridge. In addition, it was concluded that the cornering wind mismatch in the roof corner/edge regions could not be solely attributed to the wind-azimuth-independent discrepancy between the turbulence intensity of the approach field and laboratory flows.

Wind Environment Assessment around High-Rise Buildings through Wind Tunnel Test and Computational Fluid Dynamics

  • Min-Woo Park;Byung-Hee Nam;Ki-Pyo You;Jang-Youl You
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.321-329
    • /
    • 2022
  • High-rise buildings constructed adjacent to low-rise structures experience frequent damage caused by the associated strong wind. This study aimed to implement a standard evaluation of the wind environment and airflow characteristics around high-rise apartment blocks using wind tunnel tests (WTT) and computational fluid dynamics (CFD) simulations. The correlation coefficient between the CFD and wind tunnel results ranged between 0.6-0.8. Correlations below 0.8 were due to differences in the wake flow area range generated behind the target building according to wind direction angle and the effect of the surrounding buildings. In addition, a difference was observed between the average velocity ratio of the wake flow wind measured by the WTT and by the CFD analysis. The wind velocity values of the CFD analysis were therefore compensated, and, consequently, the correlations for most wind angles increased.