• Title/Summary/Keyword: Wind Test

Search Result 1,772, Processing Time 0.038 seconds

Conceptual Study of a Low-Speed Wind Tunnel for Performance Test of Wind Turbine (풍력터빈 성능시험을 위한 저속풍동 개념연구)

  • Kang, Seung-Hee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.4
    • /
    • pp.24-29
    • /
    • 2011
  • Conceptual study of an open-circuit type low-speed wind tunnel for performance test of wind turbine blade and airfoil is conducted. The tunnel is constituted of a settling chamber, a contraction, closed test section, a diffuser, two corners, a cross leg and a fan and motor. For the performance test, the closed test section width of 1.8 m, height of 1.8 m and length of 5.25 m is selected. The contraction ratio is 9 to 1 and maximum speed in the test section is 67 m/sec. Input power in the tunnel is about 238 kW and its energy ratio is 3.6. The wind tunnel designed in present study will be an effective tool in research and development of wind turbine and airfoil.

Comparison of finite element analysis with wind tunnel test on stability of a container crane (컨테이너 크레인의 안정성에 대한 풍동실험과 유한요소해석의 비교)

  • Han, D.S.;Lee, S.W.;Han, G.J.
    • Journal of Power System Engineering
    • /
    • v.12 no.6
    • /
    • pp.29-35
    • /
    • 2008
  • This study is conducted to provide the proper analysis method to evaluate the stability of a container crane under wind load. Two analysis method, namely structure analysis and fluid-structure interaction, are adopted to evaluate the stability of a container crane in this investigation. To evaluate the effect of wind load on the stability of the crane, 50-ton class container crane widely used in container terminals is adopted for analysis model and 19-values are considered for wind direction as design parameter. We conduct structure analysis and fluid-structure interaction for a container crane with respect to the wind direction using ANSYS and CFX. Then we compare the uplift forces yielded from two analysis with it yielded from wind tunnel test. The results are as follows: 1) A correlation coefficient between structure analysis and wind tunnel test is lower than 0.65(as $0.29{\sim}0.57$), but between fluid-structure interaction and wind tunnel test is higher than 0.65(as $0.78{\sim}0.86$). 2) There is low correlation between structure analysis and wind tunnel test but very high correlation between fluid-structure interaction and wind tunnel test.

  • PDF

Conceptual Design Study of a Low-Speed Wind Tunnel for Performance Test of Wind Turbine (풍력터빈 성능시험을 위한 풍동 개념연구)

  • Kang, Seung-Hee;Choi, Woo-Ram;Kim, Hae-Jeong;Kim, Yong-Hwi
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.431-434
    • /
    • 2009
  • Conceptual study of an open-circuit type low-speed wind tunnel for test of wind turbine blade is conducted. The tunnel is constituted of a settling chamber, a contraction, closed and open test sections, a diffuser, two corners, a cross leg and a fan and motor. For the performance test, the closed test section width of 1.8 m, height of 1.8 m and length of 5.25 m is selected. The open test section with dimension width of 1.8 m, height of 1.8 m and length of 4.14 m is adopted for aeroacoustic test. The contraction ratio is 9 to 1 and maximum speed in the closed test section is 67 m/sec. Input power in the tunnel is about 238 kW and its energy ratio is 3.6. The wind tunnel designed in present study will be an effective tool in research and development of wind turbine.

  • PDF

Computational assessment of blockage and wind simulator proximity effects for a new full-scale testing facility

  • Bitsuamlak, Girma T.;Dagnew, Agerneh;Chowdhury, Arindam Gan
    • Wind and Structures
    • /
    • v.13 no.1
    • /
    • pp.21-36
    • /
    • 2010
  • A new full scale testing apparatus generically named the Wall of Wind (WoW) has been built by the researchers at the International Hurricane Research Center (IHRC) at Florida International University (FIU). WoW is capable of testing single story building models subjected up to category 3 hurricane wind speeds. Depending on the relative model and WoW wind field sizes, testing may entail blockage issues. In addition, the proximity of the test building to the wind simulator may also affect the aerodynamic data. This study focuses on the Computational Fluid Dynamics (CFD) assessment of the effects on the quality of the aerodynamic data of (i) blockage due to model buildings of various sizes and (ii) wind simulator proximity for various distances between the wind simulator and the test building. The test buildings were assumed to have simple parallelepiped shapes. The computer simulations were performed under both finite WoW wind-field conditions and in an extended Atmospheric Boundary Layer (ABL) wind flow. Mean pressure coefficients for the roof and the windward and leeward walls served as measures of the blockage and wind simulator proximity effects. The study uses the commercial software FLUENT with Reynolds Averaged Navier Stokes equations and a Renormalization Group (RNG) k-${\varepsilon}$ turbulence model. The results indicated that for larger size test specimens (i.e. for cases where the height of test specimen is larger than one third of the wind field height) blockage correction may become necessary. The test specimen should also be placed at a distance greater than twice the height of the test specimen from the fans to reduce proximity effect.

Aerodynamic Characteristics of the Original Airfoil KA2 for the Application of Wind Turbine Blade (풍력 블레이드 적용을 위한 고유익형 KA2의 공력특성)

  • Woo, Young-Jin;Kang, Deok-Hun;Lee, Jang-Ho
    • Journal of Wind Energy
    • /
    • v.5 no.1
    • /
    • pp.33-42
    • /
    • 2014
  • The new aerofoil, KA2 was designed to apply to the wind turbine blade. For the aerofoil, numerical analysis was performed to review aerodynamic characteristics like lift and drag coefficient. And they are verified with test data using the digital wind tunnel and test samples from 3D printer. The digital wind tunnel was developed to test wing in the small laboratory, and verified with test of NACA0012 airfoil. KA2 aerofoil is asymmetric, and has the thickness ratio of 14%, and 12 degree of AOA at the maximum lift coefficient of 1.3. In this paper, aerodynamic characteristics from numerical and test approaches will be proposed with AOA in detail. Therefore, this aerofoil will be used for the design of wind turbine blade.

Stability of suspension bridge catwalks under a wind load

  • Zheng, Shixiong;Liao, Haili;Li, Yongle
    • Wind and Structures
    • /
    • v.10 no.4
    • /
    • pp.367-382
    • /
    • 2007
  • A nonlinear numerical method was developed to assess the stability of suspension bridge catwalks under a wind load. A section model wind tunnel test was used to obtain a catwalk's aerostatic coefficients, from which the displacement-dependent wind loads were subsequently derived. The stability of a suspension bridge catwalk was analyzed on the basis of the geometric nonlinear behavior of the structure. In addition, a full model test was conducted on the catwalk, which spanned 960 m. A comparison of the displacement values between the test and the numerical simulation shows that a numerical method based on a section model test can be used to effectively and accurately evaluate the stability of a catwalk. A case study features the stability of the catwalk of the Runyang Yangtze suspension bridge, the main span of which is 1490 m. Wind can generally attack the structure from any direction. Whenever the wind comes at a yaw angle, there are six wind load components that act on the catwalk. If the yaw angle is equal to zero, the wind is normal to the catwalk (called normal wind) and the six load components are reduced to three components. Three aerostatic coefficients of the catwalk can be obtained through a section model test with traditional test equipment. However, six aerostatic coefficients of the catwalk must be acquired with the aid of special section model test equipment. A nonlinear numerical method was used study the stability of a catwalk under a yaw wind, while taking into account the six components of the displacement-dependent wind load and the geometric nonlinearity of the catwalk. The results show that when wind attacks with a slight yaw angle, the critical velocity that induces static instability of the catwalk may be lower than the critical velocity of normal wind. However, as the yaw angle of the wind becomes larger, the critical velocity increases. In the atmospheric boundary layer, the wind is turbulent and the velocity history is a random time history. The effects of turbulent wind on the stability of a catwalk are also assessed. The wind velocity fields are regarded as stationary Gaussian stochastic processes, which can be simulated by a spectral representation method. A nonlinear finite-element model set forepart and the Newmark integration method was used to calculate the wind-induced buffeting responses. The results confirm that the turbulent character of wind has little influence on the stability of the catwalk.

Application of Wind Heeling Moment with Wind Tunnel Test (Wind Tunnel Test를 통한 Wind Moment의 적용 사례)

  • Kim, Jin-ho;Lee, Sang-yeol;Park, Se-il;Kim, Yang-soo
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2015.09a
    • /
    • pp.74-78
    • /
    • 2015
  • When floating platform or drilling unit is located at operating station during its design life, it has to have the sufficient stability considering external environment. To evaluate whether offshore structure is complied with the required design criteria for intact stability, the factors which decrease the righting moment have to be considered. Wind heeling moment is one of main factors because the direction is opposite to the righting moment. According to 2009 MODU CODE (Code for the construction and equipment of Mobile Offshore Drilling Units, 2009), wind heeling moment derived from wind tunnel test on scale model of offshore structure enables to apply as alternative given formula and method in 2009 MODU CODE. However, there is no the specific method for applying data derived from wind tunnel test. Based on the following reasons, this paper presents that the calculation method of wind heeling moment utilizing non-dimensional coefficient relative to wind loads (wind forces and moments) and the comparison with each method applying an example.

  • PDF

Evaluation of Aerodynamic Performance of Solar Wing System (솔라윙 시스템의 풍진동 특성 평가)

  • Kim, Yong Chul;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.1
    • /
    • pp.65-72
    • /
    • 2016
  • Aerodynamic performance of solar wing system has been evaluated through wind tunnel test. The test model has 12 panels, each supported by 2 cables. The panels were installed horizontally flat, and gaps between panels were set constant. Sag ratios of 2% and 5%, and wind directions between $0^{\circ}$ and $90^{\circ}$ were considered. Mass of test model was determined considering the mass of full scale model, and Froude number and Elastic parameter were satisfied by adjusting the mean wind speed. From the wind tunnel test, it was found that the aerodynamic performance of the solar wing system is very dependent on the wind directions and sag ratios. When the sag was 2%, the fluctuating displacements between the wind directions of $0^{\circ}$ and $30^{\circ}$ increase proportionally to the square of the mean wind speed, implying buffeting-like vibration and a sudden increase in fluctuating displacement was found at large mean wind speed for the wind directions larger than $40^{\circ}$. When the wind direction was larger than $60^{\circ}$, a sudden increase was found both at low and large mean wind speed. When the sag ratio is 5%, distribution of mean displacements is different from that of sag ratio of 2%, and the fluctuating displacements show very different trend from that of sag ratio of 2%.

The Wind Pressure Evaluation on Exterior Wall for High-rise Buildings (고층구조물 외벽의 내풍설계를 위한 풍압평가)

  • Lee Kyu-Ung;Kim Jae-Ung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.63-70
    • /
    • 2005
  • For using narrow site effectively, recently constructions of high-rise buildings have been increased. High-rise buildings are mainly governed by wind loads. Since wind flow Is vaned irregularly, the experimental method such as wind tunnel test is used to evaluate real wind loads. In this study, it is intended to estimate design wind pressure and amounts of material of cladding by AIK recommendations and wind tunnel test. Also, this study includes the investigation of reliability, suitability and economical efficiency in design of cladding of buildings by AIK recommendations and wind tunnel test by comparing and examining various results. Finally, it is concluded that not only AIK recommendations but also wind tunnel test should be considered to get the reasonable wind pressure acting on the cladding of high-rise buildings.

  • PDF

Flutter suppression of long-span suspension bridge with truss girder

  • Wang, Kai;Liao, Haili;Li, Mingshui
    • Wind and Structures
    • /
    • v.23 no.5
    • /
    • pp.405-420
    • /
    • 2016
  • Section model wind tunnel test is currently the main technique to investigate the flutter performance of long-span bridges. Further study about applying the wind tunnel test results to the aerodynamic optimization is still needed. Systematical parameters and test principle of the bridge section model are determined by using three long-span steel truss suspension bridges. The flutter critical wind at different attack angles is obtained through section model flutter test. Under the most unfavorable working condition, tests to investigate the effects that upper central stabilized plate, lower central stabilized plate and horizontal stabilized plate have on the flutter performance of the main beam were conducted. According to the test results, the optimal aerodynamic measure was chosen to meet the requirements of the bridge wind resistance in consideration of safety, economy and aesthetics. At last the credibility of the results is confirmed by full bridge aerodynamic elastic model test. That the flutter reduced wind speed of long-span steel truss suspension bridges stays approximately between 4 to 5 is concluded as a reference for the investigation of the flutter performance of future similar steel truss girder suspension bridges.