• Title/Summary/Keyword: Wind Pressure Test

Search Result 312, Processing Time 0.02 seconds

Experimental and Computational Investigation of Wind Flow Field on a Span Roof Structure

  • K B Rajasekarababu;G Vinayagamurthy;Ajay Kumar T M;Selvirajan S
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.287-300
    • /
    • 2022
  • Unconventional structures are getting more popular in recent days. Large-span roofs are used for many structures, such as airports, stadiums, and conventional halls. Identifying the pressure distribution and wind load acting on those structures is essential. This paper offers a collaborative study of computational fluid dynamics (CFD) simulations and wind tunnel tests for assessing wind pressure distribution for a building with a combined slender curved roof. The hybrid turbulence model, Improved Delayed Detached Eddy Simulation (IDDES), simulates the open terrain turbulent flow field. The wind-induced local pressure coefficients on complex roof structures and the turbulent flow field around the structure were thus calculated based upon open terrain wind flow simulated with the FLUENT software. Local pressure measurements were investigated in a boundary layer wind tunnel simultaneous to the simulation to determine the pressure coefficient distributions. The results predicted by CFD were found to be consistent with the wind tunnel test results. The comparative study validated that the recommended IDDES model and the vortex method associated with CFD simulation are suitable tools for structural engineers to evaluate wind effects on long-span complex roofs and plan irregular buildings during the design stage.

The Evaluation of Wind-induced Pressure for the Shell Structures using Computational Fluid Dynamics (전산유체역학을 이용한 셸 구조의 형상에 따른 풍압 평가)

  • Han, Sang-Eul;Park, Ji-Seon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.579-584
    • /
    • 2008
  • The importance and the interest of wind load have emphasized since the damage of the Jeju World cup Stadium and Main Stadium of Busan Asiad in 2002, and the appearance of high-rise buildings. In general, a evaluation for the wind load acting on structures have been carried out mainly through the wind tunnel test, but this technique has the huge shortcomings that consume too much cost and experimental time. However, with the rapid advances on computers, it is possible to analyze the wind pressure distribution acting on structures by numerical scheme. In this paper, to predict the wind pressure distribution acting on shell structures having the various shape by numerical simulation, governing equations of fluid flow and turbulent model is formulated. Also, evaluates the wind pressure coefficient in accordance with the structural shape for shell structures like as a membrane structures and dome structures.

  • PDF

Characteristics of wind loading on internal surface and its effect on wind-induced responses of a super-large natural-draught cooling tower

  • Zou, Yun-feng;Fu, Zheng-yi;He, Xu-hui;Jing, Hai-quan;Li, Ling-yao;Niu, Hua-wei;Chen, Zheng-qing
    • Wind and Structures
    • /
    • v.29 no.4
    • /
    • pp.235-246
    • /
    • 2019
  • Wind loading is one of important loadings that should be considered in the design of large hyperbolic natural-draught cooling towers. Both external and internal surfaces of cooling tower are under the action of wind loading for cooling circulating water. In the previous studies, the wind loads on the external surface attracted concernedly attention, while the study on the internal surface was relatively ware. In the present study, the wind pressure on the internal surface of a 220 m high cooling tower is measured through wind tunnel testing, and the effect of ventilation rate of the packing layer on internal pressure is a major concern. The characteristics of internal wind pressure distribution and its effect on wind-induced responses calculated by finite element method are investigated. The results indicate that the wind loading on internal surface of the cooling tower behaves remarkable three-dimensional effect, and the pressure coefficient varies along both of height and circumferential directions. The non-uniformity is particularly strong during the construction stage. Analysis results of the effect of internal pressure on wind-induced responses show that the size and distribution characteristics of internal pressure will have some influence on wind-induced response, however, the outer pressure plays a dominant role in the wind-induced response of cooling tower, and the contribution of internal pressure to the response is small.

Determination of Wind Pressure Coefficients around Prismatic Structures with Different Aspect Ratios (종횡비 변화에 따른 사각주형 구조물주위의 풍압계수 결정)

  • Suh, S.H.;Lee, K.Y.;Yoo, S.S.;Roh, H.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.1
    • /
    • pp.52-62
    • /
    • 1995
  • The purpose of this study is to determine the wind pressure coefficients around prismatic structures with different aspect ratios. Air flows around a model of prismatic shape are investigated experimentally in the wind tunnel and simulated using finite volume method. Pressure distributions and the corresponding pressure coefficients are calculated from the experimental and numerical results. The effects of aspect ratios on the pressure coefficients are discussed extensively. The numerical results are compared with those of experiments. The simulated and experimental results for average wind pressure coefficients are considerably lower than those defined in the Korean Architectural Standard Code.

  • PDF

High Speed Wind Tunnel Test of KHST Pantograph (한국형 고속전철용 판토그라프의 풍동소음시험)

  • 정경렬;김상헌;박수홍;김휘준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1215-1220
    • /
    • 2001
  • Wind tunnel test of a new pantograph, that is developed through the KHST project, was performed in RTRI wind tunnel test center of Japan end of last June. This paper indtroduces the measurement results and analysis of noise measurement part that is achieved during the wind tunnel test. The maximum measured sound pressure level at 5m shows 102.3dB(A) at 350km/h and it leads to 88.3dB(A) of predicted sound pressure at 25m that satisfy 91dB(A) of evaluation criteria. Major noise sources of the pantograph was identified as a link between upper and lower arm, panhead contact strips and shunt wires.

  • PDF

Computational assessment of blockage and wind simulator proximity effects for a new full-scale testing facility

  • Bitsuamlak, Girma T.;Dagnew, Agerneh;Chowdhury, Arindam Gan
    • Wind and Structures
    • /
    • v.13 no.1
    • /
    • pp.21-36
    • /
    • 2010
  • A new full scale testing apparatus generically named the Wall of Wind (WoW) has been built by the researchers at the International Hurricane Research Center (IHRC) at Florida International University (FIU). WoW is capable of testing single story building models subjected up to category 3 hurricane wind speeds. Depending on the relative model and WoW wind field sizes, testing may entail blockage issues. In addition, the proximity of the test building to the wind simulator may also affect the aerodynamic data. This study focuses on the Computational Fluid Dynamics (CFD) assessment of the effects on the quality of the aerodynamic data of (i) blockage due to model buildings of various sizes and (ii) wind simulator proximity for various distances between the wind simulator and the test building. The test buildings were assumed to have simple parallelepiped shapes. The computer simulations were performed under both finite WoW wind-field conditions and in an extended Atmospheric Boundary Layer (ABL) wind flow. Mean pressure coefficients for the roof and the windward and leeward walls served as measures of the blockage and wind simulator proximity effects. The study uses the commercial software FLUENT with Reynolds Averaged Navier Stokes equations and a Renormalization Group (RNG) k-${\varepsilon}$ turbulence model. The results indicated that for larger size test specimens (i.e. for cases where the height of test specimen is larger than one third of the wind field height) blockage correction may become necessary. The test specimen should also be placed at a distance greater than twice the height of the test specimen from the fans to reduce proximity effect.

Analysis of Wind Pressure Characteristics of Retractable Dome Roof by Opening Type Through Wind Tunnel Test (풍동실험을 통한 개폐 유형별 개폐식 돔 지붕의 풍압 특성 분석)

  • Cheon, Dong-jin;Lee, Jong-Ho;Kim, Yong-Chul;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.1
    • /
    • pp.41-49
    • /
    • 2021
  • In this study the characteristics of wind pressure that are depending on the open type of retractable dome roof were analyzed according to the wind pressure coefficient and wind pressure spectrum. The analysis results showed that the open type and shape of the roof both had a significant impact on the wind pressure changing. In case of the edge to center open type, the wind pressure has not changed much because of the complex turbulence of flow and open area. On the other hand, in case of the center to edge open type, it has confirmed that wind pressure increases due to the separation of flow in windward and open area.

A study on the equivalent static wind load estimation of large span roofs (대스팬 지붕구조물의 등가정적 풍하중 산정에 관한 연구)

  • Kim, Dae-Young;Kim, Ji-Young;Kim, Han-Young;Lee, Myung-Ho;Kim, Sang-Dae
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.245-251
    • /
    • 2004
  • This paper discuss the conditionally sampled actual wind pressure distributions causing peak quasi-static wind loads in the large span roofs using the wind pressures at many locations on dome models measured simultaneously in a wind tunnel. The actual extreme pressure distributions are compared itk load-response-correlation (LRC) method and the quasi-steady pressure distributions. Based on the results, the reason for the discrepancy in the LRC pressure distribution and the actual extreme pressure distribution are discussed. Futhermore, a brief discussion is made of the equivalent static wind load estimation for the large span roofs.

  • PDF

Effects of vertical ribs protruding from facades on the wind loads of super high-rise buildings

  • Quan, Yong;Hou, Fangchao;Gu, Ming
    • Wind and Structures
    • /
    • v.24 no.2
    • /
    • pp.145-169
    • /
    • 2017
  • The auxiliary structures of a high-rise building, such as balconies, ribs, and grids, are usually much smaller than the whole building; therefore, it is difficult to simulate them on a scaled model during wind tunnel tests, and they are often ignored. However, they may have notable effects on the local or overall wind loads of the building. In the present study, a series of wind pressure wind tunnel tests and high-frequency force balance (HFFB) wind tunnel tests were conducted on rigid models of an actual super high-rise building with vertical ribs protruding from its facades. The effects of the depth and spacing of vertical ribs on the mean values, fluctuating values and the most unfavorable values of the local wind pressure coefficients were investigated by analyzing the distribution of wind pressure coefficients on the facades and the variations of the wind pressure coefficients at the cross section at 2/3 of the building height versus wind direction angle. In addition, the effects of the depth and spacing of vertical ribs on the mean values, fluctuating values and power spectra of the overall aerodynamic force coefficients were studied by analyzing the aerodynamic base moment coefficients. The results show that vertical ribs significantly decrease the most unfavorable suction coefficients in the corner recession regions and edge regions of facades and increase the mean and fluctuating along-wind overall aerodynamic forces.

An Experimental Study on Characteristics of Pressure Drop of Screens Used in Horticultural Facilities (원예시설용 망의 압력강하 특성에 대한 실험적 연구)

  • Yum, Sung Hyun;Kang, Seung-Hee
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.31-35
    • /
    • 2013
  • This study was carried out to present the pressure drop for various wind speeds through nine types of screens used in horticultural facilities. The screens have been widely used to prevent harmful insects from being entered into agricultural facilities, to reduce strong wind and to shade a light as well. Whatever the usage of the screens was, it was necessary to have good knowledge of how much the screen caused a pressure drop for wind speeds when analyzing both the inner thermal-flow distribution in the facility and the effect of reducing wind speed by using CFD. Furthermore, as for wind screens, the pressure drop for wind speeds was needed as a design load in evaluating the structural stability of the structures supporting the screens. Therefore, the pressure drop through the screens for wind speeds of 5~30 $m{\cdot}s^{-1}$ at about 5 $m{\cdot}s^{-1}$ interval and inflow angles of $0{\sim}45^{\circ}$ at an interval of $15^{\circ}$ was respectively measured in a subsonic wind tunnel. The relation of the pressure drop for various screens was well fitted as a secondorder polynomial expression.