• 제목/요약/키워드: Wind Prediction

검색결과 939건 처리시간 0.023초

복합지형에 대한 WAsP의 풍속 예측성 평가 (Wind Speed Prediction using WAsP for Complex Terrain)

  • 윤광용;유능수;백인수
    • 산업기술연구
    • /
    • 제28권B호
    • /
    • pp.199-207
    • /
    • 2008
  • A linear wind prediction program, WAsP, was employed to predict wind speed at two different sites located in complex terrain in South Korea. The reference data obtained at locations more than 7 kilometers away from the prediction sites were used for prediction. The predictions from the linear model were compared with the measured data at the two prediction sites. Two compensation methods such as a self-prediction error method and a delta ruggedness index (RIX) method were used to improve the wind speed prediction from WAsP and showed a good possibility. The wind speed prediction errors reached within 3.5 % with the self prediction error method, and within 10% with the delta RIX method. The self prediction error method can be used as a compensation method to reduce the wind speed prediction error in WAsP.

  • PDF

WAsP을 이용한 복잡지형의 풍속 예측 및 보정 (Wind Speed Prediction using WAsP for Complex Terrain)

  • 윤광용;백인수;유능수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.268-273
    • /
    • 2008
  • A linear wind prediction program, WAsP, was employed to predict wind speed at two different sites located in complex terrain in South Korea. The reference data obtained at locations more than 7 kilometers away from the prediction sites were used for prediction. The predictions from the linear model were compared with the measured data at the two prediction sites. Two compensation methods such as a self-prediction error method and a delta ruggedness index (RIX) method were used to improve the wind speed prediction from WAsP and showed a good possibility. The wind speed prediction errors reached within 3.5 % with the self prediction error method, and within 10% with the delta RIX method. The self prediction error method can be used as a compensation method to reduce the wind speed prediction error in WAsP.

  • PDF

LSTM 딥러닝 신경망 모델을 이용한 풍력발전단지 풍속 오차에 따른 출력 예측 민감도 분석 (Analysis of wind farm power prediction sensitivity for wind speed error using LSTM deep learning model)

  • 강민상;손은국;이진재;강승진
    • 풍력에너지저널
    • /
    • 제15권2호
    • /
    • pp.10-22
    • /
    • 2024
  • This research is a comprehensive analysis of wind power prediction sensitivity using a Long Short-Term Memory (LSTM) deep learning neural network model, accounting for the inherent uncertainties in wind speed estimation. Utilizing a year's worth of operational data from an operational wind farm, the study forecasts the power output of both individual wind turbines and the farm collectively. Predictions were made daily at intervals of 10 minutes and 1 hour over a span of three months. The model's forecast accuracy was evaluated by comparing the root mean square error (RMSE), normalized RMSE (NRMSE), and correlation coefficients with actual power output data. Moreover, the research investigated how inaccuracies in wind speed inputs affect the power prediction sensitivity of the model. By simulating wind speed errors within a normal distribution range of 1% to 15%, the study analyzed their influence on the accuracy of power predictions. This investigation provided insights into the required wind speed prediction error rate to achieve an 8% power prediction error threshold, meeting the incentive standards for forecasting systems in renewable energy generation.

Short-term Wind Power Prediction Based on Empirical Mode Decomposition and Improved Extreme Learning Machine

  • Tian, Zhongda;Ren, Yi;Wang, Gang
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.1841-1851
    • /
    • 2018
  • For the safe and stable operation of the power system, accurate wind power prediction is of great significance. A wind power prediction method based on empirical mode decomposition and improved extreme learning machine is proposed in this paper. Firstly, wind power time series is decomposed into several components with different frequency by empirical mode decomposition, which can reduce the non-stationary of time series. The components after decomposing remove the long correlation and promote the different local characteristics of original wind power time series. Secondly, an improved extreme learning machine prediction model is introduced to overcome the sample data updating disadvantages of standard extreme learning machine. Different improved extreme learning machine prediction model of each component is established. Finally, the prediction value of each component is superimposed to obtain the final result. Compared with other prediction models, the simulation results demonstrate that the proposed prediction method has better prediction accuracy for wind power.

새만금 가력도 풍력발전단지에 대한 연간발전량 예측 및 검증 (Prediction and Validation of Annual Energy Production of Garyeok-do Wind Farm in Saemangeum Area)

  • 김형원;송원;백인수
    • 풍력에너지저널
    • /
    • 제9권4호
    • /
    • pp.32-39
    • /
    • 2018
  • In this study, the annual power production of a wind farm according to obstacles and wind data was predicted for the Garyeok-do wind farm in the Saemangeum area. The Saemangeum Garyeok-do wind farm was built in December 2014 by the Korea Rural Community Corporation. Currently, two 1.5 MW wind turbines manufactured by Hyundai Heavy Industries are installed and operated. Automatic weather station data from 2015 to 2017 was used as wind data to predict the annual power production of the wind farm for three consecutive years. For prediction, a commercial computational fluid dynamics tool known to be suitable for wind energy prediction in complex terrain was used. Predictions were made for three cases with or without considering obstacles and wind direction errors. The study found that by considering both obstacles and wind direction errors, prediction errors could be substantially reduced. The prediction errors were within 2.5 % or less for all three years.

정확도 향상을 위한 CNN-LSTM 기반 풍력발전 예측 시스템 (CNN-LSTM based Wind Power Prediction System to Improve Accuracy)

  • 박래진;강성우;이재형;정승민
    • 신재생에너지
    • /
    • 제18권2호
    • /
    • pp.18-25
    • /
    • 2022
  • In this study, we propose a wind power generation prediction system that applies machine learning and data mining to predict wind power generation. This system increases the utilization rate of new and renewable energy sources. For time-series data, the data set was established by measuring wind speed, wind generation, and environmental factors influencing the wind speed. The data set was pre-processed so that it could be applied appropriately to the model. The prediction system applied the CNN (Convolutional Neural Network) to the data mining process and then used the LSTM (Long Short-Term Memory) to learn and make predictions. The preciseness of the proposed system is verified by comparing the prediction data with the actual data, according to the presence or absence of data mining in the model of the prediction system.

진화적 비선형 보정 및 SVM 분류에 의한 강풍 특보 예측 기법 (Evolutionary Nonlinear Compensation and Support Vector Machine Based Prediction of Windstorm Advisory)

  • 서기성
    • 전기학회논문지
    • /
    • 제66권12호
    • /
    • pp.1799-1803
    • /
    • 2017
  • This paper introduces the prediction methods of windstorm advisory using GP nonlinear compensation and SVM. The existing special report prediction is not specialized for strong wind, such as windstorm, because it is based on the wide range of predicted values for wind speed from low to high. In order to improve the performance of strong wind reporting prediction, a method that can efficiently classify boundaries of strong wind is necessary. First, evolutionary nonlinear regression based compensation technique is applied to obtain more accurate values of prediction for wind speed using UM data. Based on the prediction wind speed, the windstorm advisory is determined. Second, SVM method is applied to classify directly using the data of UM predictors and windstorm advisory. Above two methods are compared to evaluate of the performances for the windstorm data in Jeju Island in South Korea. The data of 2007-2009, 2011 year is used for training, and 2012 year is used for test.

An improved method for predicting recurrence period wind speed considering wind direction

  • Weihu Chen;Yuji Tian;Yingjie Zhang
    • Wind and Structures
    • /
    • 제39권2호
    • /
    • pp.85-100
    • /
    • 2024
  • In light of extreme value distribution probability, an improved prediction method of the Recurrence Period Wind Speed (RPWS) is constructed considering wind direction, with the Equivalent Independent Wind Direction Number (EIWDN) introduced as a parameter variable. Firstly, taking the RPWS prediction of Beijing city as an example, the traditional Cook method is used to predict the RPWS of each wind direction based on the measured wind speed data in Beijing area. On basis of the results, the empirical formulae to determine the parameter variables are fitted to construct an improved expression of the non-exceedance probability of the RPWS. In this process, the statistical model of the optimal threshold is established, and thus the independent wind speed samples exceeding the threshold are extracted and fitted to follow the Generalized Pareto Distribution (GPD) model for analysis. In addition, the Extreme Value Type I (EVT I) distribution model is used to predict and analyze the RPWS. To verify its wide applicability, the improved method is further used in cities like Jinan, Nanjing, Wuxi, Shanghai and Shenzhen to predict and analyze the RPWS of each wind direction, and the prediction results are compared against those gained via the traditional Cook method and the whole direction. Results show that the 50-year RPWS results predicted by the improved method are basically consistent with those predicted by the traditional method, and the RPWS prediction values of most wind directions are within the envelope range of the whole wind direction prediction value. Compared with the traditional method, the improved method can readily predict the RPWS under different return periods through empirical formulae, and avoid the repeated operation process and some assumptions in the traditional Cook method, and then improve the efficiency of prediction. In addition, the improved RPWS prediction results corresponding to the GPD model are slightly larger than those of the EVT I distribution model.

해상풍력자원 예측을 위한 NCAR데이터 적용 타당성 연구 (Validation study of the NCAR reanalysis data for a offshore wind energy prediction)

  • 김병민;김현기;우재균;백인수;유능수
    • 한국태양에너지학회 논문집
    • /
    • 제32권1호
    • /
    • pp.1-7
    • /
    • 2012
  • Predictions of wind speed for six different near-shore sites were made using the NCAR (National Center for Atmospheric Research) wind data. The distances between the NCAR sites and prediction sites were varied between 40km and 150km. A well-known wind energy prediction program, WindPRO, was used. The prediction results were compared with the measured data from the AWS(Automated Weather Stations). Although the NCAR wind data were located far away from the AWS sites, the prediction errors were within 9% for all the cases. In terms of sector-wise wind energy distributions, the predictions were fairly close to the measurements, and the error in predicting main wind direction was less than $30^{\circ}$. This proves that the NCAR wind data are very useful in roughly estimating wind energy in offshore or near-shore sites where offshore wind farm might be constructed in Korea.

Pitch Angle Control and Wind Speed Prediction Method Using Inverse Input-Output Relation of a Wind Generation System

  • Hyun, Seung Ho;Wang, Jialong
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권5호
    • /
    • pp.1040-1048
    • /
    • 2013
  • In this paper, a sensorless pitch angle control method for a wind generation system is suggested. One-step-ahead prediction control law is adopted to control the pitch angle of a wind turbine in order for electric output power to track target values. And it is shown that this control scheme using the inverse dynamics of the controlled system enables us to predict current wind speed without an anemometer, to a considerable precision. The inverse input-output of the controlled system is realized by use of an artificial neural network. The proposed control and wind speed prediction method is applied to a Double-Feed Induction Generation system connected to a simple power system through computer simulation to show its effectiveness. The simulation results demonstrate that the suggested method shows better control performances with less control efforts than a conventional Proportional-Integral controller.