• Title/Summary/Keyword: Wind Power Outputs

Search Result 37, Processing Time 0.03 seconds

WEB-BASED MONITORING FOR PHOTOVOLTAIC/WIND POWER GENERATION FACILITIES (태양광/풍력 발전설비의 웹기반 모니터링기술)

  • Park, Se-Jun;Yoon, Jeong-Phil;Cha, In-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11b
    • /
    • pp.33-37
    • /
    • 2004
  • Photovoltaic energy and wind energy are highly dependent on the season, time and extremely intermittent energy sources. Because of these reasons, in view of the reliability the photovoltaic and the wind power generation system have many problems(energy conversion, energy storage, load control etc.) comparing with conventional power plant. In order to solve these existing problems, hybrid generation system composed of photovoltaic(500W) and wind power system(400W) was suggested But, hybrid generation system cannot always generate stable output due to the varying weather condition So, the auxiliary power compensation unit that uses elastic energy of spiral spring was added to hybrid generation system for the present study. It was partly confirmed that hybrid generation system was generated a stable outputs by spiral spring was continuously provided to load.

  • PDF

On UFR Settings Considering Wind Power Fluctuation In Jeju Island (제주도 풍력발전기 출력변동성을 고려한 적정 UFR 차단방식 연구)

  • Park, Min-Su;Chun, Yeong-Han;Byun, Sung-Hyun;Yang, Jeong-Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.445-450
    • /
    • 2014
  • Jeju power system is connected to the mainland power system through HVDC, and receives about half of required electricity through the HVDC lines. Jeju power system already experienced black out when a generator tripped at the moment of the HVDC line faults. But, UFR operated as was expected when HVDC line fault occurred at that time. As the penetration level of wind turbines increases, it is required to set UFR again considering intermittent wind turbin outputs. In this paper, we address a new way of UFR setting through computer simulation.

Simplified Wind Turbine Modeling and Calculation of PCC Voltage Variation according to Grid Connection Conditions (간략화된 풍력발전기 모델링과 계통연계 조건에 따른 PCC 전압 변동량 계산)

  • Im, Jl-Hoon;Song, Seung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2402-2409
    • /
    • 2009
  • This paper proposed a simple and helpful analysis model of voltage variation in order to predict the voltage variation at PCC (Point of Common Coupling), when a wind turbine is connected in an isolated grid. The PCC voltage flucuates when the wind turbine outputs active power to an isolated grid. This voltage variation is proportional to the product of the line impedance from the ideal generator to the PCC and the wind turbine output current. And It is different according as where wind turbine is connected. To solve the problem of voltage variation, this paper proposed the reactive power control. To verify the proposed analysis model, this paper utilized PSCAD/EMTDC Simulation and the field measurement data of the voltage variation during the wind power generation.

Coordinated Control Strategy for Power Systems with Wind Farms Integration Based on Phase-plane Trajectory

  • Zeng, Yuan;Yang, Yang;Qin, Chao;Chang, Jiangtao;Zhang, Jian;Tu, Jingzhe
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.20-29
    • /
    • 2018
  • The dynamic characteristics of power systems become more and more complex because of the integration of large-scale wind power, which needs appropriate control strategy to guarantee stable operation. With wide area measurement system(WAMS) creating conditions for realizing realt-ime transient stability analysis, a new coordinated control strategy for power system transient stability control based on phase-plane trajectory was proposed. When the outputs of the wind farms change, the proposed control method is capable of selecting optimal generators to balance the deviation of wind power and prevent transient instability. With small disturbance on the base operating point, the coordinated sensitivity of each synchronous generator is obtained. Then the priority matrix can be formed by sorting the coordinated sensitivity in ascending order. Based on the real-time output change of wind farm, coordinated generators can be selected to accomplish the coordinated control with wind farms. The results in New England 10-genrator 39-bus system validate the effectiveness and superiority of the proposed coordinated control strategy.

The Relationship between Wind Power Generation Grid-connected Transformer Winding Connection and Fault Current in MATLAB & SIMULINK (MATLAB & SIMULINK에서 풍력발전 계통연계 변압기결선과 고장전류와의 관계)

  • An, Hae-Joon;Kim, Hyun-Goo;Jang, Gil-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.307-309
    • /
    • 2008
  • This study suggests a modeling of grid-connected wind turbine generation system that has induction generator, and aims to perform simulations for outputs by the variation of actual wind speed and for fault current of wind generation system by the transformer winding connection. This study is implemented by matlab&simulink. The simulation shall be performed by assuming single line to ground fault generated in the system. Generator power, generator rotor speed, generator terminal current and fault current shall be observed following the performance of simulation. The fault current change will be dealt through the simulation results for fault current of wind generation system following the grid-connected transformer winding connection and the simulation result by the transformer neutral ground method.

  • PDF

Operation Algorithm of Hybrid Power System for Power Supply in a Remote Island (낙도 전력공급을 위한 복합발전시스템의 운전제어 알고리즘)

  • Kim, E.S.;Kim, S.K.;Lee, C.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.293-295
    • /
    • 2001
  • In this paper, a control algorithm of a stand-alone type photovoltaic/wind/diesel hybrid power system for operation in a remote island, is proposed in detail. Power controllers are used to combine two different power outputs of photovoltaic and wind-power generations into DC output, which is converted into AC power to meet load while charging the storage battery for later use. In the event that the whole power load cannot be met by photovoltaic and wind power only, power stored in the battery cell is supplied and if even this power run out, diesel generator will be applied. Certain portion of diesel power is used to cover the load and the other to charge the battery.

  • PDF

Economic Assessment of a Wind Farm Project Using Least Square Monte-Carlo (LSMC) Simulation (최소자승몬테카를로 시뮬레이션을 이용한 풍력발전설비 투자계획)

  • Kim, Jin-A;Lee, Jong-Uk;Lee, Jae-Hee;Joo, Sung-Kwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.32-35
    • /
    • 2011
  • The economic value of a wind farm project is influenced by various risk factors such as wind power output and electricity market price. In particular, there is uncertainty in the economic evaluation of a wind farm project due to uncertain wind power outputs, which are fluctuated by weather factors such as wind speed, and volatile electricity market prices. This paper presents a systematic method to assess the economic value and payback period of a wind farm project using Least Square Monte-Carlo (LSMC) simulation. Numerical example is presented to validate the effectiveness of the proposed economic assessment method for a wind farm project.

Development of a Time-Domain Simulation Tool for Offshore Wind Farms

  • Kim, Hyungyu;Kim, Kwansoo;Paek, Insu;Yoo, Neungsoo
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1047-1053
    • /
    • 2015
  • A time-domain simulation tool to predict the dynamic power output of wind turbines in an offshore wind farm was developed in this study. A wind turbine model consisting of first or second order transfer functions of various wind turbine elements was combined with the Ainslie's eddy viscosity wake model to construct the simulation tool. The wind turbine model also includes an aerodynamic model that is a look up table of power and thrust coefficients with respect to the tip speed ratio and pitch angle of the wind turbine obtained by a commercial multi-body dynamics simulation tool. The wake model includes algorithms of superposition of multiple wakes and propagation based on Taylor's frozen turbulence assumption. Torque and pitch control algorithms were implemented in the simulation tool to perform max-Cp and power regulation control of the wind turbines. The simulation tool calculates wind speeds in the two-dimensional domain of the wind farm at the hub height of the wind turbines and yields power outputs from individual wind turbines. The NREL 5MW reference wind turbine was targeted as a wind turbine to obtain parameters for the simulation. To validate the simulation tool, a Danish offshore wind farm with 80 wind turbines was modelled and used to predict the power from the wind farm. A comparison of the prediction with the measured values available in literature showed that the results from the simulation program were fairly close to the measured results in literature except when the wind turbines are congruent with the wind direction.

Evaluation on Effect of Wind Power Generation System According to Transformer Winding Connection at Matlab&Simulink (MATLAB&SIMULINK에서 변압기 결선에 따른 풍력발전 시스템의 영향 평가)

  • An, Hae-Joon;Ro, Kyoung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.772-773
    • /
    • 2007
  • This study suggests a modeling of grid-connected wind power generation system that has induction generator, and aims to perform simulations for outputs by the variation of actual wind speed and for fault current of wind generation system by the transformer winding connection. This study is implemented by matlab&simulink. The simulation shall be performed by assuming single line to ground fault generated in the system. Generator power, rotor speed, terminal voltage, system voltage, and fault current shall be observed following the performance of simulation. The fault current change will be dealt through the simulation results for fault current of wind generation system following the grid-connected transformer winding connection and the simulation result by the transformer neutral ground method.

  • PDF

The Time Variant Power Signal Processing of Wind Generator using Buneman Frequency Estimator Algorithm (부너맨 주파수 추정 알고리듬을 이용한 풍력발전기 가변 전력신호 처리에 관한 연구)

  • Choi, Sang-Yule;Lee, Jong-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.138-146
    • /
    • 2010
  • On wind turbine generators, the speed and volume of the wind affect the turbine angle speed which finally determines the output level of the electric power. However it is very difficult to forecast correctly the future power output and quality based on previous fixed sampling methods. This paper proposes a variable sampling method based on Buneman frequency estimation algorithm to reflect the variations of the frequency and amplitude on wind power outputs. The proposed method is also verified through the performance test by comparing with the results from previous fixed sampling methods and the real measurement data.