• Title/Summary/Keyword: Wind Environment Wind Tunnel Test

Search Result 53, Processing Time 0.018 seconds

Quantitative Analysis for Surface Recession of Ablative Materials Using High-speed Camera and 3D Profilometer (초고속 카메라와 삼차원 표면 측정기를 이용한 삭마 재료의 정량적 표면 침식 분석)

  • Choi, Hwa Yeong;Roh, Kyung Uk;Cheon, Jae Hee;Shin, Eui Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.9
    • /
    • pp.735-741
    • /
    • 2018
  • In this paper, the surface recession of ablative materials was quantitatively analyzed using a high-speed camera and a three-dimensional profilometer. The ablation tests of the graphite and carbon/phenolic composite samples were performed using a 0.4 MW arc-heated wind tunnel for simulating the atmospheric re-entry environment. The real-time images during the ablation test were captured by the high-speed camera, and analyzed to calculate the surface recession and recession rate. Also, the surface data of samples were obtained using a three-dimensional profilometer, and the surface recession was precisely calculated from the difference of height between the surface data before and after the test. It is effective to complement the two measurement results in the comprehensive analysis of surface recession phenomena.

Study of Pre-ventilation Effects on the Cabin Thermal Load (주차환기 시스템이 차 실내 열부하에 미치는 영향에 관한 연구)

  • Lee, Daewoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.84-90
    • /
    • 2014
  • The aim of this paper is to investigate the application of solar energy in reducing cabin thermal load. When a vehicle is parked under the sun in summer, the interior temperature can reach up to $70^{\circ}C$ depending on the solar intensity. Solar power, one of the green energies, is used in automobile air conditioning systems, in order to operate the blower. The power supply of a blower's voltage has been used in a solar sunroof experiment. At the climate wind tunnel, cabin temperature changes were conducted with various operating modes of an air handling system and the preventilation parking conditions of several vehicles, outdoors, was also examined. The test results of the solar sunroof, 39.3W power and 14.1% efficiency were obtained. The thermal load behavior was analysed with the air handling system operating mode differently according to the cabin temperature. By simply operating the blower, average cabin temperature decreased between $5^{\circ}C{\sim}10^{\circ}C$ in those vehicles parked outdoors in summer. This reveals that cabin thermal comfort can be improved without consuming the vehicle's extra energy, and that the performance of the air-conditioning system is better than those currently found in vehicles. Moreover, fuel economy will be increased as a result of the reduction in the use of the air-conditioning system, and many other human advantages will be gained. Such advantages include minimized VOCs and a healthy cabin environment.

Thermomechanical Coupled Analysis of Carbon/phenolic Composite Structures in Reentry Environments (재진입 환경의 탄소/페놀릭 복합재 구조물의 열기계적 연계 해석)

  • Son, Myeong Jin;Shin, Eui Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.6
    • /
    • pp.414-421
    • /
    • 2019
  • In this paper, thermomechanical coupled analysis of carbon/phenolic composites structures in reentry environment was performed. The interface of thermomechanical coupled analysis was constructed using commercial software. The governing equations of temperature and displacement fields were considered to simulate change of physical behavior due to pyrolysis and ablation effects. The results of thermomechanical coupled analysis were compared with the results of ablation test using arc-heated wind tunnel. Also, the structural stability of reentry capsule was analyzed using the analysis interface. The excellent ablation characteristics and thermal protection effects of the carbon/phenolic composites were confirmed and the constructed analysis interface can be effectively used to perform thermal protection system design.