• 제목/요약/키워드: Wind Energy Production

검색결과 270건 처리시간 0.031초

U50 풍력발전기 출력성능 실증연구 (The Field Test of Power Performance Measurement for U50 Wind Turbine)

  • 황진수;장성태;김대현;방조혁;류지윤
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.372-375
    • /
    • 2007
  • 750kW gearless type wind turbine, named U50, is developed by UNISON in Korea. The newly developed wind turbine should be evaluated the power curve and the estimated annual energy production by following international standard to verify the power performance characteristics. This paper shows the test and evaluation procedure according to IEC 61400-12-1 which specifies a procedure of measuring the power performance characteristics of a single wind turbine and applies to the testing of wind turbines of all types and sized connected to the electrical power network. And this paper also shows the power performance characteristics for U50 wind turbine which is determined in accordance with IEC regulation.

  • PDF

Effective markov transition matrix를 이용한 풍속예측 및 MCP 모델과 비교 (Accurate Wind Speed Prediction Using Effective Markov Transition Matrix and Comparison with Other MCP Models)

  • 강민상;손은국;이진재;강승진
    • 신재생에너지
    • /
    • 제18권1호
    • /
    • pp.17-28
    • /
    • 2022
  • This paper presents an effective Markov transition matrix (EMTM), which will be used to calculate the wind speed at the target site in a wind farm to accurately predict wind energy production. The existing MTS prediction method using a Markov transition matrix (MTM) exhibits a limitation where significant prediction variations are observed owing to random selection errors and its bin width. The proposed method selects the effective states of the MTM and refines its bin width to reduce the error of random selection during a gap filling procedure in MTS. The EMTM reduces the level of variation in the repeated prediction of wind speed by using the coefficient of variations and range of variations. In a case study, MTS exhibited better performance than other MCP models when EMTM was applied to estimate a one-day wind speed, by using mean relative and root mean square errors.

풍력 발전기의 조류해석 모델의 적용 (Application of Wind Turbine Models for Power Flow Analysis)

  • 김영곤;송화창
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.211-212
    • /
    • 2008
  • As a result of environmental concerns, the production of electricity through renewable energy resources is rapidly increasing. Wind energy is among the fastest growing renewable energy resources now being integrated in the power system, and the penetration rate of wind generation has been gradually increased. For power flow analysis of the recent systems, thus, steady-state modeling of wind turbines and their application are of great importance. This paper presents the procedure we applied for implementation of a steady-state wind turbine model in power flow.

  • PDF

MADS를 이용한 직접구동형 풍력발전기 최적설계 (Optimal Design of Direct-Driven Wind Generator Using Mesh Adaptive Direct Search(MADS))

  • 박지성;안영준;이철균;김종욱;정상용
    • 조명전기설비학회논문지
    • /
    • 제23권12호
    • /
    • pp.48-57
    • /
    • 2009
  • 본 논문에서는 FEM(Finite Element Method)을 이용한 직접구동형 영구자석 풍력발전기의 최적설계를 위해 최신의 최적화 기법인 MADS(Mesh Adaptive Direct Search)를 적용하였으며, 최적설계 목표는 연간 에너지 생산량(Annual Energy Production : AEP)을 최대화 하는 방향으로 선정하였다. 또한, 풍력발전기의 전 운전영역을 고려하기 위해 해당풍속에서의 통계적 확률밀도와 연간 운전시간을 적용하여 연간 최대에너지 생산량을 산정하였다. 아울러, MADS의 최적설계 결과와 병렬분산 컴퓨팅을 결합한 유전 알고리즘(Genetic Algorithm : GA)의 최적설계 결과를 비교하였으며, MADS는 병렬분산 유전알고리즘에 비해 상대적으로 빠른 수렴성을 나타내었다.

LED가 결합된 야간풍력발전 활용을 포함한 해상환경 바이오매스 생산시스템의 최적 설계 (Design and Optimization of a Biomass Production System Combined with Wind Power Generation and LED on Marine Environment)

  • 홍기훈;조성현;강훈;박정필;김태옥;신동일
    • 한국가스학회지
    • /
    • 제19권2호
    • /
    • pp.74-82
    • /
    • 2015
  • 최근 화석연료의 사용증가에 따라 대량으로 배출되는 이산화탄소는 지구 온난화 현상을 일으키는 온실가스 중 하나로 지정되어 국제협약을 통하여 온실가스의 배출을 저감하도록 규제하고 있다. 본 연구에서는 이산화탄소를 저감하는 방법 중의 하나로, 3세대 바이오매스 생산시스템인 해조류를 활용한, 지속가능한 신 개념의 FPSO로서 해상환경 바이오매스 생산시스템의 최적구조를 설계하였다. 이를 위해 격자로 구조물을 설치한 후 해조류의 주변에 LED 조명을 비추어 성장을 최대화 시키는 시스템을 구상하였다. 그리고 기존 해조류의 성장자료를 통하여 해조류의 성장 모델을 만든 후 풍력발전기와 LED 조명을 포함하는 바이오매스 생산시스템을 모델링하여 최적화 도구인 GAMS 프로그램을 이용하여 본 시스템이 환경적 관점뿐만 아니라 경제성 측면에서도 타당성을 가질 수 있는 최적구조를 설계하였다. 또한 기존의 해상환경 바이오매스 생산시스템과 비교하여 최적구조를 제안하였다.

Wind Attribute Time Series Modeling & Forecasting in IRAN

  • Ghorbani, Fahimeh;Raissi, Sadigh;Rafei, Meysam
    • 동아시아경상학회지
    • /
    • 제3권3호
    • /
    • pp.14-26
    • /
    • 2015
  • A wind speed forecast is a crucial and sophisticated task in a wind farm for planning turbines and corresponds to an estimate of the expected production of one or more wind turbines in the near future. By production is often meant available power for wind farm considered (with units KW or MW depending on both the wind speed and direction. Such forecasts can also be expressed in terms of energy, by integrating power production over each time interval. In this study, we technically focused on mathematical modeling of wind speed and direction forecast based on locally data set gathered from Aghdasiyeh station in Tehran. The methodology is set on using most common techniques derived from literature review. Hence we applied the most sophisticated forecasting methods to embed seasonality, trend, and irregular pattern for wind speed as an angular variables. Through this research, we carried out the most common techniques such as the Box and Jenkins family, VARMA, the component method, the Weibull function and the Fourier series. Finally, the best fit for each forecasting method validated statistically based on white noise properties and the final comparisons using residual standard errors and mean absolute deviation from real data.

Preliminary hydrodynamic assessments of a new hybrid wind wave energy conversion concept

  • Allan C de Oliveira
    • Ocean Systems Engineering
    • /
    • 제13권1호
    • /
    • pp.21-41
    • /
    • 2023
  • Decarbonization and energy transition can be considered as a main concern even for the oil industry. One of the initiatives to reduce emissions under studies considers the use of renewable energy as a complimentary supply of electric energy of the production platforms. Wind energy has a higher TRL (Technology Readiness Level) than other types of energy converters and has been considered in these studies. However, other types of renewable energy have potential to be used and hybrid concepts considering wind platforms can help to push the technological development of other types of energy converters and improve their efficiency. In this article, a preliminary hydrodynamic assessment of a new concept of hybrid wind and wave energy conversion platform was performed, in order to evaluate the potential of wave power extraction. A multiple OWCs (Oscillating Water Column) WEC (Wave Energy Converter) design was adopted for the analysis and some simplifications were adopted to permit using a frequency domain approach to evaluate the mean wave power estimation for the location. Other strategies were used in the OWC design to create resonance in the sea energy range to try to maximize the potential power to be extracted, with good results.

풍력단지의 발전량 추계적 모형 제안에 관한 연구 (Development of a Stochastic Model for Wind Power Production)

  • 류종현;최동구
    • 경영과학
    • /
    • 제33권1호
    • /
    • pp.35-47
    • /
    • 2016
  • Generation of electricity using wind power has received considerable attention worldwide in recent years mainly due to its minimal environmental impact. However, volatility of wind power production causes additional problems to provide reliable electricity to an electrical grid regarding power system operations, power system planning, and wind farm operations. Those problems require appropriate stochastic models for the electricity generation output of wind power. In this study, we review previous literatures for developing the stochastic model for the wind power generation, and propose a systematic procedure for developing a stochastic model. This procedure shows a way to build an ARIMA model of volatile wind power generation using historical data, and we suggest some important considerations. In addition, we apply this procedure into a case study for a wind farm in the Republic of Korea, Shinan wind farm, and shows that our proposed model is helpful for capturing the volatility of wind power generation.

다공 원반 CFD 모델을 이용한 풍력발전기 후류 해석 연구 (Wind Turbine Wake Model by Porous Disk CFD Model)

  • 신형기;장문석;방형준;김수현
    • 풍력에너지저널
    • /
    • 제4권1호
    • /
    • pp.68-74
    • /
    • 2013
  • Offshore wind farm is being increased since there are much trouble to develop onshore wind farm. But in the offshore, wind turbine wake does not dissipate less than onshore wind turbine because of low turbulence level. Thus this remained wake interacted to other wind turbine. This interaction reduces energy production in wind farm and have a bad influence on fatigue load of wind turbine. In this research, CFD model was constructed to analyze wake effect in offshore wind farm. A method that wind turbine rotor region was modelled in porous media was devised to reduce computation load and validated by comparison with Horns Rev measurement. Then wake interaction between two wind turbine was analyzed by devised porous model.

육·해상 풍력자원평가를 위한 ERA-Interim 재해석 데이터의 적용 (Application of ERA-Interim Reanalysis Data for Onshore and Offshore Wind Resource Assessment)

  • 변종기;고경남
    • 한국태양에너지학회 논문집
    • /
    • 제37권2호
    • /
    • pp.1-11
    • /
    • 2017
  • The investigation on reliability of ERA-Interim reanalysis wind data was conducted using wind data from the five met masts measured at inland and coastal areas, Jeju island. Shinchang, Handong, Udo, Susan and Cheongsoo sites were chosen for the met mast location. ERA-Interim reanalysis data at onshore and offshore twenty points over Jeju Island were analyzed for creating Wind Statistics using WindPRO software. Reliability of ERA-Interim reanalysis wind data was assessed by comparing the statistics from the met mast wind data with those predicted at the interest point using the Wind Statistics. The relative errors were calculated for annual average wind speed and annual energy production. In addition, the trend of the error was analyzed with distance from met mast. As a result, ERA-Interim reanalysis wind data was more suitable for offshore wind resource assessment than onshore.