• Title/Summary/Keyword: Wind Energy Production

Search Result 270, Processing Time 0.026 seconds

Review of the marine environmental impact assessment reports regarding offshore wind farm

  • Oh, Hyun-Taik;Chung, Younjin;Jeon, Gaeun;Shim, Jeongmin
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.11
    • /
    • pp.341-350
    • /
    • 2021
  • The energy production of offshore wind farms plays an important role in expanding renewable energy. However, the development of offshore wind farms faces many challenges due to its incompatibility with marine environments and its social acceptability among the local community. In this study, we reviewed the marine environmental impact assessment status of offshore wind farm development projects for 2012-2019 in South Korea. A total of nine projects were selected for this study, all of which experienced considerable conflict with local fisheries resources. To appropriately respond to the underlying challenges faced by offshore wind farm development and in order to better support decision-making for future impact assessment, our findings identified: i) a need for adequate preliminary investigation and technical examination of fisheries resources; ii) a need to assess and estimate the impact of underwater noise, vibration, and electromagnetic waves on fisheries resources during wind farm construction and operation; and iii) a need for a bottom-up approach that allows for communication with local stakeholders and policy-makers to guarantee the local acceptability of the development.

Wind and solar energy: a comparison of costs and environmental impacts

  • Carnevale, Ennio A.;Lombardi, Lidia;Zanchi, Laura
    • Advances in Energy Research
    • /
    • v.4 no.2
    • /
    • pp.121-146
    • /
    • 2016
  • This study is concerned with the analysis of two renewable technologies for electric energy production: wind energy and photovoltaic energy. The two technologies were assessed and compared by economic point of view, by using selected indicators characterized by a clear calculation approach, requirement of information easy to be collected, clear, but even complete, interpretation of results. The used economic indicators are Levelized Cost of Energy, $CO_2$ abatement cost and fossil fuel saving specific cost; these last two specifically aimed at evaluating the different capabilities that renewable technologies have to cut down direct $CO_2$ emissions and to avoid fossil fuel extraction. The two technologies were compared also from the environmental point of view by applying Life Cycle Assessment approach and using the environmental impact categories from the Eco-indicator'95 method. The economic analysis was developed by taking into account different energy system sizes and different geographic areas in order to compare different European conditions (Italy, Germany and Denmark) in term of renewable resource availability and market trend. The environmental analysis was developed comparing two particular types of PV and wind plants, respectively residential and micro-wind turbine, located in Italy. According to the three calculated economic indicators, the wind energy emerged as more favorable than PV energy. From the environmental point of view, both the technologies are able to provide savings for almost all the considered environmental impact categories. The proposed approach, based on the use of economic and environmental indicators may be useful in supporting the policies and the decision making procedures concerned with the promotion and use of renewables, in reference to the specific geographic, economic and temporal conditions.

Optimal location planning to install wind turbines for hydrogen production: A case study

  • Mostafaeipour, Ali;Arabi, Fateme;Qolipour, Mojtaba;Shamshirband, Shahaboldin;Alavi, Omid
    • Advances in Energy Research
    • /
    • v.5 no.2
    • /
    • pp.147-177
    • /
    • 2017
  • This study aims to evaluate and prioritize ten different sites in Iran's Khorasan provinces for the construction of wind farm. After studying the geography of the sites, nine criteria; including wind power, topography, wind direction, population, distance from power grid, level of air pollution, land cost per square meter, rate of natural disasters, and distance from road network-are selected for the analysis. Prioritization is performed using data envelopment analysis (DEA). The developed DEA model is validated through value engineering based on the results of brainstorming sessions. The results show that the order of priority of ten assessed candidate sites for installing wind turbines is Khaf, Afriz, Ghadamgah, Fadashk, Sarakhs, Bojnoord, Nehbandan, Esfarayen, Davarzan, and Roudab. Additionally, the outcomes extracted from the value engineering method identify the city of Khaf as the best candidate site. Six different wind turbines (7.5 to 5,000 kW) are considered in this location to generate electricity. Regarding an approach to produce and store hydrogen from wind farm installed in the location, the AREVA M5000 wind turbine can produce approximately $337ton-H_2$ over a year. It is an enormous amount that can be used in transportation and other industries.

Long-term simulation of wind turbine structure for distributed loading describing long-term wind loads for preliminary design

  • Ibrahimbegovic, Adnan;Boujelben, Abir
    • Coupled systems mechanics
    • /
    • v.7 no.2
    • /
    • pp.233-254
    • /
    • 2018
  • In order to reduce the dependency on fossil fuels, a policy to increase the production capacity of wind turbine is set up. This can be achieved with increasing the dimensions of offshore wind turbine blades. However, this increase in size implies serious problems of stability and durability. Considering the cost of large turbines and financial consequences of their premature failure, it is imperative to carry out numerical simulations over long periods. Here, an energy-conserving time-stepping scheme is proposed in order to ensure the satisfying computation of long-term response. The proposed scheme is implemented for three-dimensional solid based on Biot strain measures, which is used for modeling flexible blades. The simulations are performed at full spatial scale. For reliable design process, the wind loads should be represented as realistically as possible, including the fluid-structure interaction (FSI) dynamic effects on wind turbine blades. However, full-scale 3D FSI simulations for long-term wind loading remain of prohibitive computation cost. Thus, the model to quantify the wind loads proposed here is a simple, but not too simple to be representative for preliminary design studies.

Power Control and Dynamic Performance Analysis of a Grid-Interactive Wind/PV/BESS Hybrid System (계통연계형 풍력, 태양광 및 축전지 하이브리드 시스템의 출력제어 및 동특성 해석)

  • Kim, Seul-Ki;Jeon, Jin-Hong;Cho, Chang-Hee;Ahn, Jong-Bo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.317-324
    • /
    • 2007
  • Most conventional hybrid systems using renewable energy sources have been applied for stand-alone operation, but Utility-interface may be an useful and viable option for hybrid systems. Grid-connected operation may have benefits such as reduced losses in power system distribution, utility support in demand side management, and peak load shaving. This paper addresses power control and dynamic performance of a grid-connected PV/wind/BESS hybrid system. At all times the PV way and the wind turbine are individually controlled to generate the maximum energy from given weather conditions. The battery energy storage system (BESS) charges or discharges the battery depending on energy gap between grid invertger generation and production from the PV and wind system. The BESS should be also controlled without too frequently repeated shifts in operation mode, charging or discharging. The grid inverter regulates the generated power injection into the grid. Different control schemes of the grid inverter are presented for different operation modes, which include normal operation, power dispatching, and power smoothing. Simulation results demonstrate that the effectiveness of the proposed power control schemes for the grid-interactive hybrid system.

Three-Dimensional Computational Flow Analysis on Meteorological-Tower Shading Effect (풍황탑 차폐영향 분석을 위한 3차원 전산유동해석)

  • Rhee, Hui-Nam;Kim, Tae-Sung;Jeon, Wan-Ho;Kim, Hyun-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • It is difficult to avoid measurement errors caused by the shading effect of the meteorological tower, which is used for wind resource assessment according to the IEC Standard. This paper presents a validation of the computational flow analysis results by comparing the results with the wind tunnel experiment conducted for Reynolds numbers in the $10^4$ to $10^5$ range, for the preparation of a database for use in an automatic method of correcting met-tower shading errors. A three-dimensional simulation employing the MP (Modified Production) $k-{\varepsilon}$ turbulence model predicted a wind speed deficit in the wake region according to minimum wind speed ratio, within an MAE (Mean Absolute Error) of 2.4%.

Spatio-temporal variability of future wind energy over the Korean Peninsular using Climate Change Scenarios (기후변화 시나리오를 활용한 한반도 미래 풍력에너지의 시공간적 변동성 전망)

  • Kim, Yumi;Lim, Yoon-Jin;Lee, Hyun-Kyoung;Choi, Byoung-Choel
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.6
    • /
    • pp.833-848
    • /
    • 2014
  • The assessment of the current and future climate change-induced potential wind energy is an important issue in the planning and operations of wind farm. Here, the authors analyze spatiotemporal characteristics and variabilities of wind energy over Korean Peninsula in the near future (2006-2040) using Representative Concentration Pathway(RCP) scenarios data. In this study, National Institute of Meteorological Research (NIMR) regional climate model HadGEM3-RA based RCP 2.6 and 8.5 scenarios are analyzed. The comparison between ERA-interim and HadGEM3-RA during the period of 1981-2005 indicates that the historical simulation of HadGEM3-RA slightly overestimates (underestimates) the wind energy over the land (ocean). It also shows that interannual and intraseasonal variability of hindcast data is generally larger than those of reanalysis data. The investigation of RCP scenarios based future wind energy presents that future wind energy density will increase over the land and decrease over the ocean. The increase in the wind energy and its variability is particularly significant over the mountains and coastal areas, such as Jeju island in future global warming. More detailed analysis presents that the changes in synoptic conditions over East Asia in future decades can influence on the predicted wind energy abovementioned. It is also suggested that the uncertainty of the predicted future wind energy may increase because of the increase of interannual and intra-annual variability. In conclusion, our results can be used as a background data for devising a plan to develop and operate wind farm over the Korean Peninsula.

  • PDF

Correlation Analysis of Wind and Solar Power Generation Pattern for Modeling of Renewable Energy (신재생에너지 모델링을 위한 풍력 및 태양광 발전 출력 패턴 상관관계 분석)

  • Kim, Min-Jeong;Park, Young-Sik;Park, Jong-Bae;Roh, Jae-Hyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1823-1831
    • /
    • 2011
  • When the RPS(Renewable Portfolio Standards) becomes effective in 2012, the use of renewable energy will be dramatically increased. However, there are no production simulations and demand supply programs that reflect the characteristics of the renewable energy. This paper analyzes correlations of the domestic wind power and solar power generation pattern in different areas and those of these sources' output and load pattern. Based on the regional correlation analysis, an appropriate method that uses a average output of the renewable energy or another modeling that takes account of uncertainty could be selected. Because it's output is dependent on weather condition, we can not control the generation of renewable energy, that is the reason why the correlation between the load and output pattern of sources can be helpful to determine whether the renewable energy is modeled as a generator or load modifier. Through this analysis, a basis will be provided in order to properly model the renewable energy source.

System Improvement Measures for Rational Procedures of Offshore Wind Power Generation Projects : Focusing on Permits (해상풍력 발전사업의 합리적 절차를 위한 제도개선 방안 : 인허가를 중심으로)

  • Seok-Kyu Kang;Jeong-Gab Moon;Mun-Kwan Jo
    • The Journal of Fisheries Business Administration
    • /
    • v.54 no.2
    • /
    • pp.59-76
    • /
    • 2023
  • This study is to propose ways to improve the system for rational procedures for offshore wind power generation projects. The results of this study are summarized as follows. In order to quickly distribute and develop offshore wind power projects, the permitting period should be shortened through special laws, the government actively intervenes to support the formation and operation of privat-public councils to ensure residents' acceptance. In this way, it can be competitive in the future energy market. Above all, a special law (proposal) related to offshore wind power currently pending in the National Assembly should be passed as soon as possible. Finally, the government and local governments that manage public waters should provide active administrative support based on system improvement measures in consideration of these permits, and the project's main body should minimize damage to the marine environment and ecosystem. Through these subject-specific roles, offshore wind power generation will be able to reduce carbon emissions and help establish a sustainable energy production system.

Blade Shape Optimization of Wind Turbines Using Genetic Algorithms and Pattern Search Method (유전자 알고리즘 및 패턴 서치 방법을 이용한 풍력 터빈 블레이드의 형상 최적화)

  • Yi, Jin-Hak;Sale, Danny
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.369-378
    • /
    • 2012
  • In this study, direct-search based optimization methods are applied for blade shape optimization of wind turbines and the optimization performances of several methods including conventional genetic algorithm, micro genetic algorithm and pattern search method are compared to propose a more efficient method. For this purpose, the currently available version of HARP_Opt (Horizontal Axis Rotor Performance Optimizer) code is enhanced to rationally evaluate the annual energy production value according to control strategies and to optimize the blade shape using pattern search method as well as genetic algorithm. The enhanced HARP_Opt code is applied to obtain the optimal turbine blade shape for 1MW class wind turbines. The results from pattern search method are compared with the results from conventional genetic algorithm and also micro genetic algorithm and it is found that the pattern search method has a better performance in achieving higher annual energy production and consistent optimal shapes and the micro genetic algorithm is better for reducing the calculation time.