• Title/Summary/Keyword: Wildfire risk

Search Result 13, Processing Time 0.023 seconds

Risk Communication Networks in South Korea: The Case of the 2017 Gangneung Wildfire

  • Oh, Jeongmin;Jung, Kyujin;Song, Minsun
    • Journal of Contemporary Eastern Asia
    • /
    • v.20 no.2
    • /
    • pp.85-107
    • /
    • 2021
  • Wildfires have become increasingly common and intense in South Korea because of climate change, but few have recognized the catastrophic level of the problem. Given the significant impact of wildfires, emergency management stakeholders must have effective risk communication structures for rapidly responding to such phenomena and overcoming geographical difficulties. Despite the country spending billions of dollars to build a big databased early warning system, risk communication flow during the 2017 Gangneung wildfire was ineffective, thereby causing substantial economic, social, and environmental losses. To examine the patterns of information exchange in South Korea's risk communication networks and their structural characteristics during the wildfire, we conducted semantic and network analyses of real-time data collected from social media. The results showed that the inefficient flow of risk information prevented emergency responders from adequately assessing the emergency and protecting the population. This study provides new insights into effective risk communication responses to catastrophic events and methods of research on webometric approaches to emergency management.

Sensitivity Analysis of Meteorology-based Wildfire Risk Indices and Satellite-based Surface Dryness Indices against Wildfire Cases in South Korea (기상기반 산불위험지수와 위성기반 지면건조지수의 우리나라 산불발생에 대한 민감도분석)

  • Kong, Inhak;Kim, Kwangjin;Lee, Yangwon
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.2
    • /
    • pp.107-120
    • /
    • 2017
  • There are many wildfire risk indices worldwide, but objective comparisons between such various wildfire risk indices and surface dryness indices have not been conducted for the wildfire cases in Korea. This paper describes a sensitivity analysis on the wildfire risk indices and surface dryness indices for Korea using LDAPS(Local Analysis and Prediction System) meteorological dataset on a 1.5-km grid and MODIS(Moderate-resolution Imaging Spectroradiometer) satellite images on a 1-km grid. We analyzed the meteorology-based wildfire risk indices such as the Australian FFDI(forest fire danger index), the Canadian FFMC(fine fuel moisture code), the American HI(Haines index), and the academically presented MNI(modified Nesterov index). Also we examined the satellite-based surface dryness indices such as NDDI(normalized difference drought index) and TVDI(temperature vegetation dryness index). As a result of the comparisons between the six indices regarding 120 wildfire cases with the area damaged over 1ha during the period between January 2013 and May 2017, we found that the FFDI and FFMC showed a good predictability for most wildfire cases but the MNI and TVDI were not suitable for Korea. The NDDI can be used as a proxy parameter for wildfire risk because its average CDF(cumulative distribution function) scores were stably high irrespective of fire size. The indices tested in this paper should be carefully chosen and used in an integrated way so that they can contribute to wildfire forecasting in Korea.

Wildfire Risk Index Using NWP and Satellite Data: Its Development and Application to 2019 Kangwon Wildfires (기상예보모델자료와 위성자료를 이용한 산불위험지수 개발 및 2019년 4월 강원 산불 사례에의 적용)

  • Kim, Yeong-Ho;Kong, In-Hak;Chung, Chu-Yong;Shin, Inchul;Cheong, Seonghoon;Jung, Won-Chan;Mo, Hee-Sook;Kim, Sang-Il;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.337-342
    • /
    • 2019
  • This letter describes the development of WRI (Wildfire Risk Index) using GDAPS (Global Data Assimilation and Prediction System) and satellite data, and its application to the Goseong-Sokcho and Gangneung-Donghae wildfires in April 4, 2019. We made sure that the proposed WRI represented the change of wildfire risk of around March 19 and April 4 very well. Our approach can be a viable option for wildfire risk monitoring, and future works will be necessary for the utilization of GK-2A products and the coupling with the wildfire prediction model of the Korea Forest Service.

Development of Satellite-based Drought Indices for Assessing Wildfire Risk (산불발생위험 추정을 위한 위성기반 가뭄지수 개발)

  • Park, Sumin;Son, Bokyung;Im, Jungho;Lee, Jaese;Lee, Byungdoo;Kwon, ChunGeun
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1285-1298
    • /
    • 2019
  • Drought is one of the factors that can cause wildfires. Drought is related to not only the occurrence of wildfires but also their frequency, extent and severity. In South Korea, most wildfires occur in dry seasons (i.e. spring and autumn), which are highly correlated to drought events. In this study, we examined the relationship between wildfire occurrence and drought factors, and developed satellite-based new drought indices for assessing wildfire risk over South Korea. Drought factors used in this study were high-resolution downscaled soil moisture, Normalized Different Water Index (NDWI), Normalized Multi-band Drought Index (NMDI), Normalized Different Drought Index (NDDI), Temperature Condition Index (TCI), Precipitation Condition Index (PCI) and Vegetation Condition Index (VCI). Drought indices were then proposed through weighted linear combination and one-class support vector machine (One-class SVM) using the drought factors. We found that most drought factors, in particular, soil moisture, NDWI, and PCI were linked well to wildfire occurrence. The validation results using wildfire cases in 2018 showed that all five linear combinations produced consistently good performance (> 88% in occurrence match). In particular, the combination of soil moisture and NDWI, and the combination of soil moisture, NDWI, and precipitation were found to be appropriate for representing wildfire risk.

Analysis of the potential landslide hazard after wildfire considering compound disaster effect (복합재해 영향을 고려한 산불 후 산사태 잠재적 피해 위험도 분석)

  • Lee, Jong-Ook;Lee, Dong-Kun;Song, Young-Il
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.1
    • /
    • pp.33-45
    • /
    • 2019
  • Compound disaster is the type that increases the impact affected by two or more hazard events, and attention to compound disaster and multi-hazards risk is growing due to potential damages which are difficult to predict. The objective of this study is to analyze the possible impacts of post-fire landslide scenario quantitatively by using TRIGRS (Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis), a physics-based landslide model. In the case of wildfire, soil organic material and density are altered, and saturated hydraulic conductivity decrease because of soil exposed to high temperature. We have included the change of soil saturated hydraulic conductivity into the TRIGRS model through literature review. For a case study, we selected the area of $8km^2$ in Pyeongchang County. The landslide modeling process was calibrated before simulate the post-wildfire impact based on landslide inventory data to reduce uncertainty. As a result, the mean of the total factor of safety values in the case of landslide was 2.641 when rainfall duration is 1 hour with rainfall intensity of 100mm per day, while the mean value for the case of post-wildfire landslide was lower to 2.579, showing potential landslide occurrence areas appear more quickly in the compound disaster scenario. This study can be used to prevent potential losses caused by the compound disaster such as post-wildfire debris flow or landslides.

Numerical Experiment on the Variation of Atmospheric Circulation due to Wild Fire (산불 발화에 따른 하층 대기 순환장 변화에 관한 수치 실험)

  • Lee, Hwa-Woon;Tak, Sung-Hoon;Lee, Soon-Hwan
    • Journal of Environmental Science International
    • /
    • v.22 no.2
    • /
    • pp.173-185
    • /
    • 2013
  • In order to clarify the impact of wildfire and its thermal forcing on atmospheric wind and temperature patterns, several numerical experiments were carried out using three dimensional atmospheric dynamic model WRF with wildfire parametrization module SFIRE. Since wind can accelerate fire spread speed, the moving speed of fireline is faster than its initial values, and the fireline tends to move the northeast, because of the wind direction and absolute vorticity conservation law associated with driving force induced by terrain. In comparison with non-fire case, the hydraulic jump that often occurs over downwind side of mountain became weak due to huge heat flux originated by surface wildfire and wind pattern over downwind side of mountain tends to vary asymmetrically with time passing. Therefore temporal variation of wind pattern should be catched to prevent the risk of widfire.

Application of Hyperion Hyperspectral Remote Sensing Data for Wildfire Fuel Mapping

  • Yoon, Yeo-Sang;Kim, Yong-Seung
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.1
    • /
    • pp.21-32
    • /
    • 2007
  • Fire fuel map is one of the most critical factors for planning and managing the fire hazard and risk. However, fuel mapping is extremely difficult because fuel properties vary at spatial scales, change depending on the seasonal situations and are affected by the surrounding environment. Remote sensing has potential to reduce the uncertainty in mapping fuels and offers the best approach for improving our abilities. Especially, Hyperspectral sensor have a great potential for mapping vegetation properties because of their high spectral resolution. The objective of this paper is to evaluate the potential of mapping fuel properties using Hyperion hyperspectral remote sensing data acquired in April, 2002. Fuel properties are divided into four broad categories: 1) fuel moisture, 2) fuel green live biomass, 3) fuel condition and 4) fuel types. Fuel moisture and fuel green biomass were assessed using canopy moisture, derived from the expression of liquid water in the reflectance spectrum of plants. Fuel condition was assessed using endmember fractions from spectral mixture analysis (SMA). Fuel types were classified by fuel models based on the results of SMA. Although Hyperion imagery included a lot of sensor noise and poor performance in liquid water band, the overall results showed that Hyperion imagery have good potential for wildfire fuel mapping.

A Study on Wildfire Disaster Response based on Cases of International Disaster Safety Management Systems (해외 재난 안전관리 시스템 사례기반 산불재난대응 연구)

  • Lee, Jihyun;Park, Minsoo;Jung, Dae-kyo;Park, Seunghee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.3
    • /
    • pp.345-352
    • /
    • 2020
  • Forest fires generate many types of risk as well as a wide and varied range of damage. Various studies and systems have emerged in response to wildfire disasters. International wildfire disaster safety management systems apply advanced technologies such as utilizing big data, GIS-based systems, and decision-making systems. This study analyzes South Korea's and other countries' forest fire disaster safety management systems, and suggests alternatives for wildfire disaster safety management in Korea. First, a means of integrating information, including field information, obtained by domestic agencies is proposed. Second, a method of applying big data to the disaster response system is proposed. Third, a decision-making system is applied to an existing GIS-based system. When applying the above countermeasures to Korea's existing disaster safety management system, various information and data can be visualized and thus more easily identified, leading to more effective decision-making and reduced fire damage.

Forest Fire Risk Analysis Using a Grid System Based on Cases of Wildfire Damage in the East Coast of Korean Peninsula (동해안 산불피해 사례기반 격자체계를 활용한 산불위험분석)

  • Kuyoon Kim ;Miran Lee;Chang Jae Kwak;Jihye Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.785-798
    • /
    • 2023
  • Recently, forest fires have become frequent due to climate change, and the size of forest fires is also increasing. Forest fires in Korea continue to cause more than 100 ha of forest fire damage every year. It was found that 90% of the large-scale wildfires that occurred in Gangwon-do over the past five years were concentrated in the east coast area. The east coast area has a climate vulnerable to forest fires such as dry air and intermediate wind, and forest conditions of coniferous forests. In this regard, studies related to various forest fire analysis, such as predicting the risk of forest fires and calculating the risk of forest fires, are being promoted. There are many studies related to risk analysis for forest areas in consideration of weather and forest-related factors, but studies that have conducted risk analysis for forest-friendly areas are still insufficient. Management of forest adjacent areas is important for the protection of human life and property. Forest-adjacent houses and facilities are greatly threatened by forest fires. Therefore, in this study, a grid-based forest fire-related disaster risk map was created using factors affected by forest-neighboring areas using national branch numbers, and differences in risk ratings were compared for forest areas and areas adjacent to forests based on Gangneung forest fire cases.

A Study on the Hazard and Risk Analysis of Hospital in Korea - Focused on Local Medical Centers (의료기관의 위험도 분석 조사 - 지역공공의료원을 중심으로)

  • Kim, Youngaee;Song, Sanghoon;Lee, Hyunjin;Kim, Taeyun
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.28 no.4
    • /
    • pp.31-39
    • /
    • 2022
  • The purpose of this study is to analyse the hazard risk by examining the magnitude and severity of each type of hazard in order to mitigate and prepare for disasters in medical facilities. Methods: The hazard risk analysis for hazard types was surveyed for team leaders of medical facilities. The questionnaire analyzed data from 27 facilities, which were returned from 41 Local Medical Centers. Results: When looking at the 'Risk' by category type of hazard, the influence of health safety and fire/energy safety comes first, followed by natural disaster, facility safety, and crime safety. On the other hand, as for 'Magnitude', facility safety and crime safety come first, followed by health safety, fire/energy safety, and natural disasters. Most of the top types of disaster judged to have high hazard in medical facilities are health types. The top five priorities of hazard in medical facilities, they are affected by the geographical and industrial conditions of the treatment area. In the case of cities, the hazard was found to be high in the order of infectious disease, patient surge, and wind and flood damage. On the other hand, in rural areas, livestock diseases and infectious diseases showed the highest hazard. In the case of forest areas, the hazard was high in the order of wildfire, fire accident, lightning, tide, earthquake, and landslide, whereas in coastal areas of industrial complexes, the hazard was high due to fire, landslide, water pollution, marine pollution, and chemical spill accident. Implications: Through the research, standards will be established for the design of hospitals with disaster preparedness, and will contribute to the preparation of preemptive measures in terms of maintenance.