• Title/Summary/Keyword: Wild strain

Search Result 607, Processing Time 0.022 seconds

Stringent Factor Regulates Antibiotics Production and Morphological Differentiation of Streptomyces clavuligerus

  • RYU , YONG-GU;JIN, WOOK;KIM, JIN-YOUNG;KIM, JAE-YOUNG;LEE, SANG-HEE;LEE, KYE-JOON
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1170-1175
    • /
    • 2004
  • The involvement of the relA and rsh genes in the morphological and physiological differentiation of Streptomyces clavuligerus was evaluated with the relA and rsh genes mutants. The morphological differentiation of S. clavuligerus was greatly affected by the disruption of the relA gene, but not very much by the disruption of the rsh gene. The altered morphological characteristics were completely restored by the complementation of the corresponding disrupted genes. Thus, it was apparent that the mycelial morphology and clavulanic acid production were severely affected by the disruption of the relA gene. Production of clavulanic acid in the submerged batch culture and glycerol-limited chemostat showed that production was inversely related to the specific growth rate in the wild-type strain. However, the production of clavulanic acid in the ${\Delta}relA$ and ${\Delta}rsh$ null mutants was completely abolished. Therefore, it seems plausible that the stringent response of S. clavuligerus to starvation for amino acids is governed mainly by ReIA, rather than Rsh, and that the (p)ppGpp synthesized immediately after the depletion of amino acids triggers the initiation of pathways for both morphological and physiological differentiation in this species.

Evidence for Sulfite Proton Symport in Saccharomyces cerevisiae

  • Park, Hoon;Alan T. Bakalinsky
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.967-971
    • /
    • 2004
  • The kinetics of sulfite uptake were examined in a wild-type laboratory strain of Saccharomyces cerevisiae to determine if carrier-mediated sulfite uptake involved a proton symport, as previous studies on sulfite uptake have suggested both an active process and facilitated diffusion. Accumulation of intracellular sulfite was initially rapid and linear up to 50 sec. Uptake was saturable at final concentrations equal to or greater than 3 mM sulfite, and increased 2-fold in the presence of 2% glucose. Uptake was significantly reduced in cells pretreated with 100-500 $\mu$M carbonyl cyanide mchlorophenylhydrazone (CCCP) or 2,4-dinitrophenol (DNP), both of which dissipate proton gradients. Uptake was also significantly inhibited in the presence of 1 mM arsenate, an inhibitor of ATP synthesis. Extracellular alkalization was observed in cells incubated with 1-2 mM sulfite in a weak tartrate buffer at pH 3.5 and 4.5. These findings suggest that the bisulfite ion, $HSO_3^-$, an anionic form of sulfite, is taken up by a carrier-mediated proton symport. A met16 sull sul2 mutant, impaired in both sulfite formation and sulfate uptake, was found able to grow on a medium with sulfite as the sole Sulfur source, indicating that the sulfate transporters Sul1p and Sul2p are not required for sulfite uptake.

The Possible Role of SCO3388, a tmrB-like Gene of Streptomyces coelicolor, in Germination and Stress Survival of Spores

  • Kwon, So-Yeon;Kwon, Hyung-Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.3
    • /
    • pp.165-170
    • /
    • 2013
  • The SCO3388 gene from Streptomyces coelicolor is homologous to tmrB, the tunicamycin resistance gene of Bacillus subtilis. The SCO3388-inactivation strain (SY-tbl-1) was generated by replacing SCO3388 with thiostrepton resistance gene. Spores of S. coelicolor derivatives were prepared on mannitol-soy flour (MS) agar on which SY-tbl-1 displayed no significant defect in growth and development. When plated on R4 agar, spores of SYtbl-1 displayed retardation in growth and sporulation, whereas its mycelium gave rise to normal growth. Thus, SCO3388 is suggested to be involved in the dormant spore germination. Expression of SCO3388 under the ermE1 promoter restored but only partially the ability to sporulate in SY-tbl-1. Neither SY-tbl-1 nor SY-tbl-1/ermE1p-SCO3388 showed a difference in tunicamycin resistance to the wild type whereas, interestingly, the introduction of ermE1p-SCO3388 dramatically enhanced spore survival to heat and detergent treatments, suggesting that SCO3388 might play a role in the maintenance of spore cell wall integrity.

Improvement of Photoheterotrophic Hydrogen Production of Rhodobacter sphaeroides by Removal of B800-850 Light-Harvesting Complex

  • KIM EUI-JIN;YOO SANG-BAE;KIM MI-SUN;LEE JEONG K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1115-1119
    • /
    • 2005
  • The photoheterotrophic $H_2$ production of Rhodobacter sphaeroides was significantly increased through disruption of the genes coding for uptake hydrogenase and poly-${\beta}$-hydroxybutyrate (PHB) synthase (Lee et al., Appl. Microbiol. Biotechnol. 60: 147-153, 2002). In this work, we further removed the B800-850 light-harvesting (LH) complex from the strain and found an increase in $H_2$ production at the light-saturating cell growth (${\ge}10$ Watts $[W]/m^2$). Neither the mutant nor the wild-type produced more $H_2$ at the brighter light. Accordingly, light does not appear to be limited for the $H_2$ production by the presence of B800-850. However, increase in the level of the spectral complexes resulted in decrease of $H_2$ production. Thus, although the B875 is essential for light harvesting, the consumption of cellular energy for the synthesis of B800-850 and the surplus LH complexes may reduce the energy flow into the $H_2$ production of R. sphaeroides.

New Yeast Cell-Based Assay System for Screening Histone Deacetylase 1 Complex Disruptor

  • Jeon, Kwon-Ho;Kim, Min-Jung;Kim, Seung-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.286-291
    • /
    • 2002
  • Histone deacetylase I (HDAC1) works as one of the components in a nucleosome remodeling (NuRD) complex that consists of several proteins, including metastasis-associated protein 1 (MTA1). Since the protein-protein interaction of HDAC1 and MTA1 would appear to be important for both the integrity and functionality of the HDAC1 complex, the interruption of the HDAC1 and MTA1 interaction may be an efficient way to regulate the biological function of the HDAC1 complex. Based on this idea, a yeast two-hybrid system was constructed with HDAC1 and MTA1 expressing vectors in the DNA binding and activation domains, respectively. To verify the efficiency of the assay system, 3,500 microbial metabolite libraries were tested using the paper disc method, and KB0699 was found to inhibit the HDAC1 and MTA1 interaction without any toxicity to the wild-type yeast. Furthermore, KB0699 blocked the interaction of HDAC1 and MTA1 in an in vitro GST pull down assay and induced morphological changes in B16/BL6 melanoma cells, indicating the interruption of the HDAC1 complex function. Accordingly, these results demonstrated that the yeast assay strain developed in this study could be a valuable tool for the isolation of a HDAC1 complex disruptor.

Escherichia coli Can Produce Recombinant Chitinase in the Soil to Control the Pathogenesis by Fusarium oxysporum Without Colonization

  • Chung, Soo-Hee;Kim, Sang-Dal
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.474-480
    • /
    • 2007
  • Fusarium wilt of cucumbers was effectively controlled by Escherichia coli expressing an endochitinase gene (chiA), and the rate was as effective (60.0%) as the wild-type strain S. proteamaculans 3095 (55.0%) where the gene was cloned. However, live cells of soil inoculated E. coli host harboring the chiA gene did not proliferate but declined 100-fold from $10^8$ CFU during the first week and showed less than 10 cells after day 14, suggesting that E. coli was able to express and produce the chitinase enzyme to the soil even as the population was gradually decreasing. Because the majority of the strains was alive for only a short period of time and the Fusarium-affected seedlings showed symptoms of wilting within 7-10 days, it seems that the pathogen control was decided early after the introduction of the biocontrol agent, eliminating the survival of the antagonist. These results indicated that soil inoculated E. coli could sufficiently express and produce the recombinant protein to control the pathogen, and root or soil colonization of the antagonist might not be a significant factor in determining the efficacy of biological control.

Enhancement of Ornithine Production in Proline-Supplemented Corynebacterium glutamicum by Ornithine Cyclodeaminase

  • Lee, Soo-Youn;Cho, Jae-Yong;Lee, Hyun-Jeong;Kim, Yang-Hoon;Min, Ji-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.127-131
    • /
    • 2010
  • In this study, Corynebacterium glutamicum and its derived mutants were used to demonstrate the relationship between proline, glutamate, and ornithine. The maximum ornithine production was shown in the culture medium (3,295.0 mg/l) when the cells were cultured with 20 mM proline, and was 15.5 times higher than in the presence of 1 mM proline. However, glutamate, which is known as an intermediate in the process of converting proline to ornithine, did not have any positive effect on ornithine production. This suggests that the conversion of proline to ornithine through glutamate, is not possible in C. glutamicum. Comparative analysis between the wild-type strain, SJC 8043 ($argF^-$, $argR^-$), and SJC 8064 ($argF^-$, $argR^-$, and $ocd^-$), showed that C glutamicum could regulate ornithine production by ornithine cyclodeaminase (Ocd) under proline-supplemented conditions. Therefore, proline directly caused an increase in the endogenous level of ornithine by Ocd, which would be a primary metabolite in the ornithine biosynthesis pathway.

Hsp20, a Small Heat Shock Protein of Deinococcus radiodurans, Confers Tolerance to Hydrogen Peroxide in Escherichia coli

  • Singh, Harinder;Appukuttan, Deepti;Lim, Sangyong
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.8
    • /
    • pp.1118-1122
    • /
    • 2014
  • The present study shows that DR1114 (Hsp20), a small heat shock protein of the radiation-resistant bacterium Deinococcus radiodurans, enhances tolerance to hydrogen peroxide ($H_2O_2$) stress when expressed in Escherichia coli. A protein profile comparison showed that E. coli cells overexpressing D. radiodurans Hsp20 (EC-pHsp20) activated the redox state proteins, thus maintaining redox homeostasis. The cells also showed increased expression of pseudouridine (psi) synthases, which are important to the stability and proper functioning of structural RNA molecules. We found that the D. radiodurans mutant strain, which lacks a psi synthase (DR0896), was more sensitive to $H_2O_2$ stress than wild type. These suggest that an increased expression of proteins involved in the control of redox state homeostasis along with more stable ribosomal function may explain the improved tolerance of EC-pHsp20 to $H_2O_2$ stress.

Characterization of Dephosphocoenzyme A Kinase from Streptomyces peucetius ATCC27952, and Its Application for Doxorubicin Overproduction

  • Lee, Na-Rae;Rimal, Hemraj;Lee, Joo-Ho;Oh, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.9
    • /
    • pp.1238-1244
    • /
    • 2014
  • Dephosphocoenzyme A (CoaE) catalyzes the last step in the biosynthesis of the cofactor coenzyme A. In this study, we report the identification and application of CoaE from Stretomyces peucetius ATCC27952. After expression of coaE, the protein was found to have a molecular mass of 28.6 kDa. Purification of the His-tagged fused CoaE protein was done by immobilized metal-affinity chromatography, and then in vitro enzymatic coupling assay was performed. The increasing NADH consumption with time shed light on the phosphorylating activity of CoaE. Furthermore, the overexpression of coaA and coaE independently under the $ermE^*$ promoter in the doxorubicin -producing wild type strain, resulted in 1.4- and 1.5-fold enhancements in doxorubicin production, respectively. In addition, the overexpression of both genes together showed a 2.1-fold increase in doxorubicin production. These results established a positive role for secondary metabolite production from Streptomyces peucetius.

No excessive mutations in transcription activator-like effector nuclease-mediated α-1,3-galactosyltransferase knockout Yucatan miniature pigs

  • Choi, Kimyung;Shim, Joohyun;Ko, Nayoung;Park, Joonghoon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.2
    • /
    • pp.360-372
    • /
    • 2020
  • Objective: Specific genomic sites can be recognized and permanently modified by genome editing. The discovery of endonucleases has advanced genome editing in pigs, attenuating xenograft rejection and cross-species disease transmission. However, off-target mutagenesis caused by these nucleases is a major barrier to putative clinical applications. Furthermore, off-target mutagenesis by genome editing has not yet been addressed in pigs. Methods: Here, we generated genetically inheritable α-1,3-galactosyltransferase (GGTA1) knockout Yucatan miniature pigs by combining transcription activator-like effector nuclease (TALEN) and nuclear transfer. For precise estimation of genomic mutations induced by TALEN in GGTA1 knockout pigs, we obtained the whole-genome sequence of the donor cells for use as an internal control genome. Results: In-depth whole-genome sequencing analysis demonstrated that TALEN-mediated GGTA1 knockout pigs had a comparable mutation rate to homologous recombination-treated pigs and wild-type strain controls. RNA sequencing analysis associated with genomic mutations revealed that TALEN-induced off-target mutations had no discernable effect on RNA transcript abundance. Conclusion: Therefore, TALEN appears to be a precise and safe tool for generating genomeedited pigs, and the TALEN-mediated GGTA1 knockout Yucatan miniature pigs produced in this study can serve as a safe and effective organ and tissue resource for clinical applications.