• 제목/요약/키워드: Wild strain

검색결과 607건 처리시간 0.029초

Roles of the meta- and the ortho-Cleavage Pathways for the Efficient Utilization of Aromatic Hydrocarbons by Sphingomonas yanoikuyae Bl

  • 송정민;김영민;Gerben J. Zylstra;김응빈
    • 미생물학회지
    • /
    • 제38권4호
    • /
    • pp.245-245
    • /
    • 2002
  • Catabolic pathways for the degradation of various aromatics by Sphingomonas yanoikuyae Bl are intertwined, joining at the level of substituted benzoates, which are further degraded vita ring cleavage reactions. The mutant strain EK497, which was constructed by deleting a large DNA region containing most of the genes for biphenyl, naphthalene, m-xylene, and m-toluate degradation, was unable to grow on all of the aromatics tested except for benzoate as the sole source of carbon and energy.S. yanoikuyae EK497 was found to possess only catechol ortho-ring cleavage activity due to deletion of the genes for the meta-cleavage pathway. Wild-type S. yanoikuyae Bl grown on benzoate has both catechol orthoand meta-cleavage activity. However, m-xylene and m-toluate, which are metabolized through methylbenzoate, and biphenyl, which is metabolized through benzoate, induce only the meta-cleavage pathway, suggesting the presence of a substrate-dependent induction mechanism.

Colistin 생산균주의 균주개량 및 productivity 증대를 위한 발효최적화

  • 예병대;황용배;김영희;김동건;양호석
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2002년도 생물공학의 동향 (X)
    • /
    • pp.224-227
    • /
    • 2002
  • Colistin produced from Penibacillius polymyxa was widely used as an antibiotic active against gram-negative bacteria and as feed additive. This research studied on increment of colistin productivity by mutation of P. polymyxa. As a result, several mutants were obtained from the strain by UV radiation and NTG treatment. They produced approximately 8.5${\sim}$9.0 g/L of colistin in flask and jar culture. Colistin productivity of the mutant, named Penibacillius polymyxa CBY, showed 100 times than that of wild type. When Penibacillius polymyxa CBY fermented in the optimal medium, it produced up to 18 g/L of colistin in jar fermentation.

  • PDF

Improved Plant Growth from Seed Bacterization Using Siderophore Overproducing Cold Resistant Mutant of Pseudomonas fluorescens

  • Katiyar, Vandana;Goel, Reeta
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권4호
    • /
    • pp.653-657
    • /
    • 2004
  • The cold resistant mutants of P. fluorescens strain $PRS_{9}$ and ATCC13525 were developed which could grow equally well at $28^{\circ}C$ and $10^{\circ}C$. All the mutants were tested for siderophore production, of which $CRPF_9$ (ATCC13525 mutant) was selected, as there was a 16.8-fold increase when compared to its wild-type. Under in vitro conditions, $CRPF_9$ showed better growth promotion both in wheat (29.1% increase in root length) and mung bean (51.5% increase in root length) at $10^{\circ}C$. Greenhouse trials showed a significant increase in root (13.84cm) and shoot (15.0cm) length of $CRPF_9$-treated mung bean seeds, indicating increased rhizocompetence of the mutant. Ferric citrate was a better iron source than ferric hydroxide for plant growth.

Estimation of Theoretical Yield for Ethanol Production from D-Xylose by Recombinant Saccharomyces cerevisiae Using Metabolic Pathway Synthesis Algorithm

  • Lee, Tae-Hee;Kim, Min-Young;Ryu, Yeon-Woo;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권3호
    • /
    • pp.384-388
    • /
    • 2001
  • The metabolic pathway synthesis algorithm was applied to estimate the maximum ethanol yield from xylose in a model recombinant Saccharomyces cerevisiae strain containing the genes involved in xylose metabolism. The stoichiometrically independent pathways were identified by constructing a biochemical reaction network for conversion of xylose to ethanol in the recombinant S. cerevisiae. Two independent pathways were obtained in xylose-assimilating recombinant S. cerevisiae as opposed to six independent pathways for conversion of glucose to ethanol. The maximum ethanol yield from xylose was estimated to be 0.46 g/g, which was lower than the known value of 0.51 g/g for glucose-fermenting and wild-type xylose-fermenting yeasts.

  • PDF

Influence of Gluconeogenic Phosphoenolpyruvate Carboxykinase (PCK) Expression on Succinic Acid Fermentation in Escherichia coli Under High Bicarbonate Condition

  • Kwon Yeong-Deok;Lee Sang-Yup;Kim Pil
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권9호
    • /
    • pp.1448-1452
    • /
    • 2006
  • The effects of amplifying the gluconeogenic phosphoenolpyruvate carboxykinase of Escherichia coli ($pck_{Ec}$) on succinic acid production in E. coli were examined under anaerobic condition. No significant increase in succinic acid production was observed in E. coli overexpressing the $pck_{Ec}$ gene without supplementing $NaHCO_{3}$ or $MgCO_{3}$. On the other hand, succinic acid production was enhanced as the $NaHCO_{3}$ concentration was increased. When 20 g/l of $NaHCO_{3}$ was added, succinic acid production in recombinant E. coli overexpressing PCK was 2.2-fold higher than that observed in the wild-type strain. It was concluded that the gluconeogenic $pck_{Ec}$ overexpression enabled E. coli to enhance succinic acid production only under the high bicarbonate supplementation condition.

Proteomic Analysis of Osmotic Stress Response in Streptomyces coelicolor A3(2) Using 2-Dimentional Gel Electrophoresis and MALDI-TOF Mass Spectrometry

  • Cha, Chang-Jun;Lee, Eun-Jin;Roe, Jung-Rye
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2002년도 제9회 학술 발표회 프로그램과 논문초록
    • /
    • pp.55-55
    • /
    • 2002
  • An alternative sigma factor as encoded by the $\sigma$$\^$B/ gene in Streptomyces coelicolor A3(2) was known to be involved in the differentiation and osmotic stress response. Protein expression profiles of wild-type and a $\sigma$$\^$B/ mutant strain of S coelicolor A3(2), which is impaired in defense against osmotic stress, were compared in the absence and presence of osmotic stress, using 2-dimentional gel electrophoresis.(omitted)

  • PDF

Substitution of Gly-224 Residue to Ile in Yeast Alcohol Dehydro-genase and Enzyme Reaction Mechamism

  • Lee, Kang-Man;Ryu, Ji-Won
    • Archives of Pharmacal Research
    • /
    • 제16권3호
    • /
    • pp.231-236
    • /
    • 1993
  • Gly-224 residue of yeast alcohol dehydrogenase was mutated by site-directed mufagenesis to isoleucine, which is the corresponding amino acid residue of horse liver alcohol dehydrogenase. The mutated gene on M13 vector was subcloned in YEp13 and used to transform Saccharomyces cerevisiae 302-21 #2 strain, and the expressed protein was purified. The tumover numbers of mutant enzyme for ethanol and acetaldehyde were decreased copared to wild-type enzyme. The results of product inhibition studies indicated that the reaction mechanism was changed to Iso Theorell-Chance from Ordered Bi Bi. We supposed that Gly-224 was related to the enzyme reaction mechanism.

  • PDF

Salmonella Type III Secretion System을 이용한 단백질 분비시스템 개발 (Development of Protein Secretion System using Type III Secretion System of Salmonella)

  • ;홍순호
    • KSBB Journal
    • /
    • 제24권4호
    • /
    • pp.393-396
    • /
    • 2009
  • 단백질을 동물세포내부로 직접 주입할 수 있는 살모넬라 균주의 T3SS를 활용하여 모델 단백질인 lipase를 세포외부로 분비하는 시스템을 제작하였다. T3SS의 effector 단백질인 SlrP, SptP의 N-말단부분과 lipase를 fusion하였다. Lipase 분비실험의 결과 S. typhimurium SL1344 (sptP-tliA) 균주의 경우 lipase 활성도가 약 2.6배 증가하는 결과를 얻을 수 있었다. 본 실험결과를 바탕으로 T3SS에 관한 연구가 더욱 활발히 이루어진다면, T3SS를 신개념 약물전달시스템으로 활용이 가능해 지리라 예상된다.

Mannose permease가 변형된 대장균 변이주에 대한 coliphage N4 감염의 저해 (Ingibition of coliphage N4 infection to escherichia coli mutant defective in mannose permease)

  • 김기태;유욱준
    • 미생물학회지
    • /
    • 제25권3호
    • /
    • pp.184-188
    • /
    • 1987
  • Evidences that the mannose permease of Escherichia coli mediates the infection of N4 in early steps, were obtained as follows. First, A mutant strain of Escherichia coli which was resistant to both wild type N4 and lambda whose genome is Charon 4A containing human genomic fragments in its EcoR I site, could not use mannose efficiently. Second, N4 could not infect pel mutant strains which lack one or all of intact components of mannose permease. However, unknown alterations in N4 made it possible for the phage to infect pel mutant of E. coli. It also turned out to be clear that the receptor of N4 was different from that of lambda.

  • PDF

Energy Status of Neurospora crassa Mutant nap in Relation to Accumulation of Carotenoids

  • Belozersk, Tatyana A.;Potapova, Tatyana V.;Isakova, Elena P.;Shurubor, Eugene I.;Savel'eva, Ludmila V.;Zvyagilskaya, Renata A.
    • Journal of Microbiology
    • /
    • 제41권1호
    • /
    • pp.41-45
    • /
    • 2003
  • N crassa mutant strain nap showed reduced growth rate, decreased electric membrane potential, and elevated intracellular ATP content in comparison to the wild type. Blue light induced a hyperpolarization of the membrane potential in both strains. The analysis of oxidative and phosphorylation activities of mitochondria isolated from the two strains has revealed that nap utilized more efficient oxidative pathways. The higher intracellular ATP content in the nap was presumably due to impaired transport systems of the plasma membrane, and to a lesser extent to the functioning of the fully competent respiratory chain. The excess ATP possibly accounts for carotenoid accumulation in the mutant.