• Title/Summary/Keyword: Wigner-Ville Distribution(WVD)

Search Result 13, Processing Time 0.018 seconds

Loose-part Mass Estimation Using Time-frequency Analysis (시간-주파수 기법을 이용한 금속파편 질량 추정)

  • Park, Jin-Ho;Yoon, Doo-Byung;Park, Keun-Bae;Choi, Young-Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.8 s.113
    • /
    • pp.872-878
    • /
    • 2006
  • Mass estimation was derived as functions of acceleration magnitude and primary frequency. The conventional method of mass estimation used frequency data directly in the frequency domain. The signals that can be obtained sensor contained noise as well as impact signal. Therefore, how well we can detect the frequency data in noise directly determines the quality of mass estimation. To find exact frequency data, we used time-frequency analysis. The time-frequency methods are expected to be more useful than the conventional frequency domain analyses for the mass estimation problem on a plate type structure. Also it has been concluded that the smoothed WVD can give more reliable means than the other methodologies for the mass estimation in a noisy environment.

Combustion Condition Monitoring of the Marine Diesel Engine using Acceleration Signal of Cylinder Head (실린더 헤더의 가속도 신호를 이용한 선박용 디젤엔진의 연소 상태 모니터링)

  • Seo, Jong-Cheol;Kim, Sang-Hwan;Lee, Don-Chool
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.607-610
    • /
    • 2009
  • The abnormal combustion in the running engine results to knocking which increases the pressure and temperature in the cylinder, thereby decreasing the generated power by reducing the thermal efficiency. When the temperature and pressure in the cylinder increased rapidly by knocking, abnormal combustion takes place and the engine power is decreased. To investigate the knocking phenomenon, accelerometers are installed in the cylinder head to monitor and diagnose the vibration signal. As method of signal analysis, the time-frequency analysis method was adapted for acquisition of vibration signal and analyzes engine combustion in the short time. In this experiment, after analyzing time data which is stored in the signal recorder in one unit work (4 strokes: 2 revolutions), the signal with frequency and Wavelet methods with extracted one engine combustion data was also analyzed. Then, normal condition with no knocking signal is analyzed at this time. Hereafter, the experiments made a standard for distinguishing normal and abnormal condition to be carried out in acquisition of vibration signal at all cylinders and extracting knocking signal. In addition, analyzing methods can be diverse with Symmetry Dot Patterns (SDP), Time Synchronous Average (TSA), Wigner-Ville Distribution (WVD), Wigner-Ville Spectrum (WVS) and Mean Instantaneous Power (MIP) in the cold test [2]. With signal processing of vibration from engine knocking sensor, the authors adapted a part of engine /rotor vibration analysis and monitoring system for marine vessels to prevent several problems due to engine knocking

  • PDF

Detection of the gas-saturated zone by spectral decomposition using Wigner-Ville distribution for a thin layer reservoir (얇은 저류층 내에서 WVD 빛띠 분해에 의한 가스 포화 구역 탐지)

  • Shin, Sung-Il;Byun, Joong-Moo
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.1
    • /
    • pp.39-46
    • /
    • 2012
  • Recently, stratigraphic reservoirs are getting more attention than structural reservoirs which have mostly developed. However, recognizing stratigraphic thin gas reservoirs in a stacked section is usually difficult because of tuning effects. Moreover, if the reflections from the brine-saturated region of a thin layer have the same polarity with those from the gas-saturated region, we could not easily identify the gas reservoir with conventional data processing technique. In this study, we introduced a way to delineate the gas-saturated region in a thin layer reservoir using a spectral decomposition method. First of all, amplitude spectrum with the variation of the frequency and the incident angle was investigated for the medium which represents property of Class 3, Class 1 or Class 4 AVO response. The results show that the maximum difference in the amplitude spectra between brine and gas-saturated thin layers occurs around the peak frequency independent of the incident angle and the type of AVO responses. In addition, the amplitude spectra of the gas-saturated zone are greater than those of brine-saturated one in Class 3 and Class 4 at the peak frequency while those of phenomenon occur oppositely in Class 1. Based on the results, we applied spectral decomposition method to the stacked section in order to distinguish the gas-saturated zone from the brine-saturated zone in a thin layer reservoir. To verify our new method, we constructed a thin-layer velocity model which contains both gas and brine-saturated zones which have the same reflection polarities. As a result, in the spectral decomposed sections near the peak frequency obtained by Wigner-Ville Distribution (WVD), we could identify the difference between reflections from gas- and brinesaturated region in the thin layer reservoir, which was hardly distinguishable in the stacked section.