• Title/Summary/Keyword: Width-thickness ratio

Search Result 490, Processing Time 0.021 seconds

Study on axial compressive behavior of quadruple C-channel built-up cold-formed steel columns

  • Nie, Shaofeng;Zhou, Tianhua;Liao, Fangfang;Yang, Donghua
    • Structural Engineering and Mechanics
    • /
    • v.70 no.4
    • /
    • pp.499-511
    • /
    • 2019
  • In this study, the axial compressive behavior of novel quadruple C-channel built-up cold-formed steel columns with different slenderness ratio was investigated, using the experimental and numerical analysis. The axial compressive capacity and failure modes of the columns were obtained and analyzed. The finite element models considering the geometry, material and contact nonlinearity were developed to simulate and analyze the structural behavior of the columns further. There was a great correlation between the numerical analyses and test results, which indicated that the finite element model was reasonable and accurate. Then influence of, slenderness ratio, flange width-to-thickness ratio and screw spacing on the mechanical behavior of the columns were studied, respectively. The tests and numerical results show that due to small slenderness ratio, the failure modes of the specimens are generally local buckling and distortional buckling. The axial compressive strength and stiffness of the quadruple C-channel built-up cold-formed steel columns decrease with the increase of maximum slenderness ratio. When the screw spacing is ranging from 150mm to 450mm, the axial compressive strength and stiffness of the quadruple C-channel built-up cold-formed steel columns change little. The axial compressive capacity of quadruple C-channel built-up cold-formed steel columns increases with the decrease of flange width-thickness ratio. A modified effective length factor is proposed to quantify the axial compressive capacity of the quadruple C-channel built-up cold-formed steel columns with U-shaped track in the ends.

An Experimental Study on the Flexural Behavior for T-joints with Square Hollow Structural Sections (각형강관 T형 접합부의 휨거동에 관한 실험 연구)

  • Park, Keum Sung;Lee, Sang Sup;Choi, Young Hwan;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.211-219
    • /
    • 2009
  • The purpose of the study described in this paper was to experimentally investigate branch squared T joints with cold formed hollow structural sections under the in plane moment in a Vierendeel Truss. The branch in the T joints was welded to the upper flange of the chord. The main experimental parameters were the ratio of the width to the thickness of the chord ($2{\gamma}$), with ${16.7{\leq}2{\gamma}{\leq}33.3}$, and the width ratio of the branch to the chord ($\beta$), with ${0.40{\leq}{\beta}{\leq}0.71}$. Nine specimens were tested and manufactured in joints under the in plane bending moment. Based on the results of the test, the in plane moment strength of the branch squared T joints was determined according to the bending deformation of the chord flange yielding, regardless of the ratio of the width to the thickness of the chord and the ratio of the width of the branch to the width of the chord. Also, the in plane moment strength of the branch squared T joints in the hollow structural sections can be defined as 1.5 times the moment load at M1%B the strength of the joints that governed the serviceability in the control group. Finally, the experimental results with the branch squared T joints show that the in lane moment strength of the joint increased as $2{\gamma}$ decreased and $\beta$ increased.

A Fructure Mechanics Analysis on the Crack in the Variable Thickness Plate Having Fillet (필렛을 갖는 변후부재의 균열에 대한 파괴역학적 연구)

  • 양원호;최용식;조명래
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1433-1438
    • /
    • 1991
  • 본 연구에서는 팔렛을 갖는 유한폭 변후판재 내의 모드 Ⅰ균열에 대하여 3차 원 유한요소법으로 응력확대계수를 수치해석하였다.

The relationship between clinical crown form and gingival feature in upper anterior region (상악 전치부에서 치관 형태에 따른 치은의 특성)

  • Kim, Soo-Hyung;Chung, Hyun-Ju
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.3
    • /
    • pp.761-776
    • /
    • 2005
  • The purpose of the present study was to examine the relationship between the form of the clinical crowns in the maxillary anterior segment and the clinical feature of gingiva such as morphological characteristics and the gingival thickness. Fifty periodontally healthy subjects were clinically examined regarding the probing depth, the thickness of the free gingiva, and the width of the keratinized gingiva. From study models of the maxillary anterior region, the width at cervical third(CW) and the length(CL) of the clinical crown, the papillary height, and the gingival angle of the 6 anterior teeth were measured. Each tooth was classified into 4 groups (longnarrow, NL; narrow, N; wide, W; short-wide, WS) according to CW/CL ratio and all the data were compared between groups NL and WS using independent t-test. Stepwise multiple regression analysis was performed for each tooth region with the gingival thickness at the level of sulcus bottom, the width of keratinized gingiva, and gingival angle as the dependent variables. As the results, the NL group of the upper anterior teeth displayed, higher papilla height, and narrower keratinized gingiva, more acute gingival angle resulting in pronounced "scalloped" contour of the gingival margin, compared to the WS group. There was no significant difference between groups NL and WS with respect to probing depth and the gingival thickness. The regression analyses demonstrated that the gingival thickness in central incisors was significantly associated to the mesio-distal width and bucco-lingual width of the crown, and labial probing depth. The width of keratinized gingiva was significantly associated with labial probing depth in central incisors and with proximal probing depth and gingival angle in lateral incisors, and with labial and proximal probing depth, and gingival angle in canines. The gingival angle was significantly associated with papillary height and CW/CL ratio and additionally with proximal probing depth in central incisors, with the width of keratinized gingiva in lateral incisors, and with labial probing depth and the width of keratinized gingiva in canines. These results indicate that the form of clinical crown in upper anterior region could influence the clinical feature of gingiva and the influencing factors might be different according to the tooth region.

Arc efficiency and kerf width in plasma arc cutting process (플라즈마 절단공정에서의 아아크 효율과 절단폭)

  • 노태정;나석주
    • Journal of Welding and Joining
    • /
    • v.5 no.1
    • /
    • pp.23-33
    • /
    • 1987
  • Plasma arc cutting is a fusion cutting process in which a gas constricted arc is employed to produce high temperature, high velocity jet at the workpiece. Even though the plasma arc cutting has been wid¬ely used in the industry, very little work has been done on the analysis of the process. In this paper, the kerf width was numerically analyzed by soving the temperature distribution in base metal under consideration of the latent heat effect. In modelling the heat flow problem, the heat intensity of the plasma arc was assumed to have a Gaussion distribution in the transverse direction and expone¬ntially decreasing in the thickness direction. The thermal efficiency and the heat input ratio of the top surface were experimentally deterimned for various thickness and cutting conditions, and used in numerical calculation of the kerf width. The experimental results were in eonsiderabely good agreement with the theoretically predicted kerf width.

  • PDF

Structural Performance Evaluation to Centrally Compressed CFT Columns Using Seismic Rectangular Steel Tube (중심압축력을 받는 내진 건축구조용 각형강관 CFT 부재의 구조성능평가)

  • Shim, Hyun-Ju;Choi, Byong-Jeong;Lee, Eun-Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.443-450
    • /
    • 2012
  • In this study, This study investigates the axial load behavior of concrete-filled steel columns using seismic rectangular steel tube with the width-to-thickness and slenderness ratio. Due to cold-roll forming and cold-press forming of steel tube, the flat part and the corner part of the rectangular steel tubes are changed in the material properties compared to SN-steel plate. It was showed the tendency to increase yield strength, tensile strength and upper limit of yield ratio This phenomenon affects the nonlinear behavior after local buckling of the steel tube. Therefore, the coupon test was performed by the processing of rectangular steel tube, in order to assess forming performance. And a total of 6 CFT-columns were tested under monotonic loading condition. Main parameters were the width-thickness ratio and the slenderness ratio.

Three-dimensional numerical simulation for the prediction of product shape in sheet casting process

  • Chae, Kyung-Sun;Lee, Mi-Hye;Lee, Seong-Jae;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • v.12 no.2
    • /
    • pp.107-117
    • /
    • 2000
  • Prediction of the product shape in sheet casting process is performed from the numerical simulation. A three-dimensional finite element method is used to investigate the flow behavior and to examine the effects of processing conditions on the sheet produced. Effects of inertia, gravity, surface tension and non-Newtonian viscosity on the thickness profile of the sheet are considered since the edge bead and the flow patterns in the chill roll region have great influence on the quality of the products. In the numerical simulation with free surface flows, the spine method is adopted to update the free surface, and the force-free boundary condition is imposed along the take-up plane to avoid severe singularity problems existing at the take-up plane. From the numerical results of steady isothermal flows of a generalized Newtonian fluid, it is shown that the draw ratio plays a major role in predicting the shape of the final sheet produced and the surface tension has considerable effect on the bead thickness ratio and the bead width fraction, while shear-thinning and/or tension-thickening viscosity affect the degree of neck-in.

  • PDF

Experimental Investigations of Ultimate Strength for Siffened Plates with High-Strength Steel (고강도강 보강판의 극한강도에 관한 실험)

  • Hwang, Won-Sup;Park, Wan-Bae;Cho, Eun-Sang
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.457-466
    • /
    • 2001
  • The behavior of stiffened plates with high strength steels (SM570 and POSTEN80) are experimentally investigated The results of compression tests on 7 specimens are reported herein. Based on the results the effects of width-thickness ratio of plate element and flexural rigidity of rib are examined. The strength behavior of stiffened plates are discussed with the comparisons of ultimate strength and design strength curve Furthermore experimental and FEM analysis results are also compared.

  • PDF

Strength Evaluation of Steel Box Beam-to-Column Connections with Axial Load (축방향 하중을 받는 강재 상자단면 보-기둥 접합부의 강도평가)

  • Hwang, Won Sup;Park, Moon Su;Kim, Young Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.117-127
    • /
    • 2007
  • In this study, we evaluate the strength of steel box beam-to-column connections subjected to axial loads in steel frame piers. The T-connection strength was reduced due to the column axial force in the two-story pier structure. To examine this phenomenon, non-linear FEM analysis was carried out and the analytical procedure was verified by comparing it with experimental results. To clarify the effect of the axial force and major design parameters in connection with strength, influence of panel zone width-thickness ratio, sectional area, and axial force was investigated using FEM analysis. Also, the theoretical strength equations were suggested by stress distribution of panel zone. The strength of the T-connection was compared with one of the one-story pier structure connections. As a result, the strength evaluation equations are proposed in consideration of the panel zone width-thickness ratio and sectional area ratio for the T-connections.

On the direct strength and effective yield strength method design of medium and high strength steel welded square section columns with slender plate elements

  • Shen, Hong-Xia
    • Steel and Composite Structures
    • /
    • v.17 no.4
    • /
    • pp.497-516
    • /
    • 2014
  • The ultimate carrying capacity of axially loaded welded square box section members made of medium and high strength steels (nominal yield stresses varying from 345 MPa to 460 MPa), with large width-to-thickness ratios ranging from 35 to 70, is analyzed by finite element method (FEM). At the same time, the numerical results are compared with the predicted results using Direct Strength Method (DSM), modified DSM and Effective Yield Strength Method (EYSM). It shows that curve a, rather than curve b recommended in Code for design of steel structures GB50017-2003, should be used to check the local-overall interaction buckling strength of welded square section columns fabricated from medium and high strength steels when using DSM, modified DSM and EYSM. Despite all this, EYSM is conservative. Compared to EYSM and modified DSM, DSM provides a better prediction of the ultimate capacities of welded square box compression members with large width-thickness ratios over a wide range of width-thickness ratios, slenderness ratios and steel grades. However, for high strength steels (nominal yield strength greater than 460 MPa), the numerical and existent experimental results indicate that DSM overestimates the load-carrying capacities of the columns with width-thickness ratio smaller than 45 and slenderness ratio less than 80. Further, for the purpose of making it suitable for a wider scope, DSM has been modified (called proposed modified DSM). The proposed modified DSM is in excellent agreement with the numerical and existing experimental results.