• Title/Summary/Keyword: Width reduction

Search Result 802, Processing Time 0.023 seconds

Anatomical Measurement of the Masseter Muscle and Surface Mapping of the Maximal Thickness Point Using Computed Tomography Analysis (전산화단층촬영 영상분석을 이용한 교근의 해부학적 계측 및 최대 두께점 피부 표지화)

  • Suh, Hyeun-Woo;Kim, Hyo-Seong;Ha, Ki-Young;Kim, Boo-Yeong;Pae, Nam-Seok;Kim, Tae-Yeon
    • Archives of Plastic Surgery
    • /
    • v.38 no.2
    • /
    • pp.173-181
    • /
    • 2011
  • Purpose: Masseter muscle is an important muscle of mastication. Because it has a great influence on the shape of low facial contour, patients who have masseteric hypertrophy show square-shaped jaw appearance. As aesthetic procedures for the reduction of the masseter muscle volume, radiofrequency ablation or botulinum toxin injection is at the center of attention. Authors studied the anatomical measurement of the thickness and width of masseter muscle and the surface mapping of the maximal thickness point using computed tomography (CT) scan to identify the useful guide for the injection of botulinum toxin in masseteric hypertrophy patients. Methods: We analyzed 2 mm-thickness OMU (ostiomeatal unit) CT of 112 normal people (224 masseter muscles) taken from June 2009 to May 2010. First, we measured the thickness, width and depth of the masseter muscle from the skin surface and analysed each by side, sex and age, respectively. The distribution of the thickness of the muscle and the correlation of thickness and width of the muscle were studied also. Second, we underwent surface mapping of the maximal thickness point using CT analysis by means of checking the vertical and horizontal distance from the angle of the mandible. Results: The average thickness and width of the masseter muscle was 17.73 mm and 40.78 mm in the male patients and were 14.33 mm and 37.42 mm in the female patients. Statistically, both figures of the male patients were larger than those of the female patients. However, the depth of the muscle from the skin surface in female patients (7.37 mm) was larger than that of the male patients (6.15 mm). There were no statistical difference in side or age. The width and thickness of the masseter muscle were in the positive correlation. The location of maximal thickness point of the masseter muscle was 27.77 mm vertically and 27.68 mm horizontally in the male patients, and 25.19 mm vertically and 25.42 mm horizontally in the female patients from the angle of mandible. Conclusion: We were able to present statistical evidence of the diagnosis and treatment of the masseteric hypertrophy regarding the anatomical measurements such as the thickness and width. And the maximal thickness point of the masseter muscle may be a useful guide for the clinical procedures of botulinum toxin injection.

Numerical Design Approach to Determining the Dimension of Large-Scale Underground Mine Structures (대규모 지하 광산 구조물의 규모 결정을 위한 수치해석적 설계 접근)

  • Lee, Yun-Su;Park, Do-Hyun;SunWoo, Choon;Kim, Gyo-Won;Kang, Jung-Seok
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.120-129
    • /
    • 2012
  • Recently, mining facilities have being installed in an underground space according to a social demand for environment-friendly mine development. The underground structures for mining facilities usually requires a large volume of space with width greater than height, and thus the stability assessment of the large-scale underground mine structure is an important issue. In this study, we analysed a factor of safety based on strength reduction method, and proposed a numerical design approach to determining the dimension of underground mine structures in combination with a strength reduction method and a multivariate regression analysis. Input design parameters considered in the present study were the stress ratio and shear strength of rock mass, and the width and cover depth of underground mine structures. The stabilities of underground mine structures were assessed in terms of factor of safety under different conditions of the above input parameters. It was calculated by the strength reduction method, and several kinds of fit functions were obtained through various multivariate regression analyses. Using a best-fit regression model, we proposed the charts which provide preliminary design information on the dimension of underground mine structures.

Simultaneous Reduction of Contralateral Malar Complex in Cases of Unilateral Zygoma Bone Fracture (편측 관골 골절에서 동시 반대측 관골 축소술)

  • Kim, Peter Chan-Woo;Lee, Byung-Kwon;Bae, Ji-Suk
    • Archives of Plastic Surgery
    • /
    • v.38 no.6
    • /
    • pp.851-860
    • /
    • 2011
  • Purpose: Reduction by simply assembling bones is recognized as treatment for a zygoma fracture. However, in patients who originally had a protruding zygoma, the fractured parts look like malarplasty after the edema subsides, giving a soft impression which patients notice. Thus, we created symmetry through simultaneous contralateral malar reduction in a unilateral zygoma fracture. Methods: In this study, the patients who had surgery between July, 2008 and December, 2009 with admission were object. In 76 patients with a zygoma fracture, the patients with bilateral zygoma fractures were excluded. Among 48 patients who had a reduction only after a unilateral zygoma fracture, the patients hoping for a reduction of their rough protruding zygoma were analyzed with front cephalometry. The study progressed on 22 patients who had simultaneous contralateral malar reduction in a unilateral zygoma fracture with consent. After fixing the fracture, we did a straight zygoma osteotomy through a 1.5 cm intraoral incision. After that, we created symmetry with a special ruler and fixed the broken zygomatic arch with a screw and plate. We evaluated the facial index and satisfaction with a statistical analysis before and after the surgery. Results: In 22 patients, there was no reoperation except for 1 patient who had a zygoma fracture. None of the patients were treated for infection or hematoma. Two patients complained of paresthesia after the malar reduction operation, but this subsided in 4 months. Most of them were satisfied with the malar reduction, especially the women, and we obtained a better mid facial contour with decreased facial width ($p$ <0.05). Conclusion: Existing zygoma fracture surgery focuses on anatomical reduction. However, we need to have a cosmetic viewpoint in fractures as interests of face contour arise. Thus, contralateral malar reduction got a 4.7 (range 0~5) from patients who had malar reduction surgery in our hospital. Although adjusting to all zygoma fractures has limitations, it can be a new method in zygoma fractures when there are limited indications of protruding zygoma and careful attention is given to patients' high demands.

Analysis of Suspended Solids Reduction by Vegetative Filter Strip for Cultivated Area Using Web GIS-Based VFSMOD (VFSMOD를 이용한 경작지의 고형물질 유출 저감효과)

  • Ahn, Jae Hwan;Yun, Sang Leen;Kim, Seog Ku;Park, Youn Shik;Lim, Kyoung Jae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.12
    • /
    • pp.792-800
    • /
    • 2012
  • The study was performed to simulate the reduction efficiency of suspended solids (SS) for cultivated land located at riverine area at the Namhan River and the Bukhan River watershed sites (site A, B, C) under the rainfall conditions using HUFF & SCS UH-based VFS Design module of Web GIS-based VFSMOD System. The study indicates that the field 5% sloped, located at Bukhan River watershed (site A), requires at least 0.5 m width of Vegetative Filter Strip (VFS) to reduce 70% of SS while the field 10% sloped requires the at least 1.0~1.5 m width of VFS to reduce 70% SS, under the condition 106.2 mm of rainfall event and bell pepper or corn of crops. Against the conditions 95.1 mm of rainfall event and sweet potato or soy bean of crops, the field 5% sloped, located at Namhan River watershed (site B) requires at least 0.5 m width of VFS to reduce 70% of SS while the field 10% sloped requires at least 1.0 m width of VFS to reduce 50% SS. The crops sweet potato and soy bean are cultivated in the site C, located at Namhan River watershed, 1 m of VFS is capable of 64.0% and 62.0% of SS reduction against 102.6 mm and 151.2 mm rainfall conditions respectively, for the 5% sloped field. The result supports that VFS is one of most potential methods to reduce SS from cultivated area, which is environment-friendly hydrologic structure. The VFS design, however, needs to be simulated before its installation in the field, the simulation needs to consider not only various characteristics of the field but also different conditions affecting the VFS, using a model capable to consider a lot of factors.

A Study on the Reinforcement Effects of Fully-Grouted Rock Bolts (전면접착형 록볼트의 보강효과에 관한 연구)

  • 정해성;문현구
    • Tunnel and Underground Space
    • /
    • v.9 no.3
    • /
    • pp.194-203
    • /
    • 1999
  • The axial stress in rock bolt, the shear stress at the bolt-grout interface and the neutral point are analyzed to understand the mechanical behavior of rook bolt. To analyze the support effects of rock bolt in various geological conditions, numerical analyses are performed with regard to bolt spacing and bolt length in several geological conditions and tunnel sizes. Through the numerical analyses, the distributions of maximum tensile stress and shear stress are determined. And the excavation width of underground opening affects the position of the neutral point. In the circular opening supported by pattern bolting, the increase of confining pressure, the reduction of plastic zone, and that of ground displacement are determined by using the radial stress increase ratio, the plastic zone reduction ratio and the displacement reduction ratio respectively. The results of this study can be applied to a practical tunnel design through understanding of the trends of these support effects.

  • PDF

Evaluation of Reduction in Reflection Sound bound from a Shaped Noise Barrier Panel (형상 방음벽 패널의 반사음 저감효과 평가)

  • Lee, Jaiyeop;Kim, Ilho
    • International Journal of Highway Engineering
    • /
    • v.17 no.5
    • /
    • pp.19-24
    • /
    • 2015
  • PURPOSES : The noise, which is typically generated by fast moving vehicles, can be intercepted by installing a noise barrier with a soundproof panel. However, reflections from the panels cause secondary noise, and hence lower the effectiveness of the panels. In this study, the reduction of reflection noise by considering the shape, especially zigzag one, of the soundproof panel have been evaluated. METHODS : The simulation model used in this study was Nord2000, which simulates real-road situations effectively. Based on the simulation results, the joining angle of $133^{\circ}$ with the pattern width (a) equal to 2 m and the projection height (b) equal to 0.5 m was adapted in the zigzag shape as the best profit designing factors. RESULTS: The measuring results at middle height, 15 m showed reduction at all points except the point with average -1.6 dB. At a greater height of 30 m, 2 points showed reduction. A real-sized facility was constructed to investigate the reflected sound from a zigzag shaped panel up to the height of 5 m. CONCLUSIONS: The reduction effects were detected in all the receive points in the range of 2-6 m distances and 1-5 m heights comparing the plane panel. Compared to plane panel, the noises are reduced at an average of 2.4 dBA.

Behavior of one way reinforced concrete slabs with styropor blocks

  • Al-Azzawi, Adel A.;Abbas, J;Al-Asdi, Al-Asdi
    • Advances in concrete construction
    • /
    • v.5 no.5
    • /
    • pp.451-468
    • /
    • 2017
  • The problem of reducing the self-weight of reinforced concrete structures is very important issue. There are two approaches which may be used to reduced member weight. The first is tackled through reducing the cross sectional area by using voids and the second through using light weight materials. Reducing the weight of slabs is very important as it constitutes the effective portion of dead loads in the structural building. Eleven slab specimens was casted in this research. The slabs are made one way though using two simple supports. The tested specimens comprised three reference solid slabs and eight styropor block slabs having (23% and 29%) reduction in weight. The voids in slabs were made using styropor at the ineffective concrete zones in resisting the tensile stresses. All slab specimens have the dimensions ($1100{\times}600{\times}120mm$) except one solid specimens has depth 85 mm (to give reduction in weight of 29% which is equal to the styropor block slab reduction). Two loading positions or cases (A and B) (as two-line monotonic loads) with shear span to effective depth ratio of (a/d=3, 2) respectively, were used to trace the structural behavior of styropor block slab. The best results are obtained for styropor block slab strengthened by minimum shear reinforcement with weight reduction of (29%). The increase in the strength capacity was (8.6% and 5.7%) compared to the solid slabs under loading cases A and B respectively. Despite the appearance of cracks in styropor block slab with loads lesser than those in the solid slab, the development and width of cracks in styropor block slab is significantly restricted as a result of presence a mesh of reinforcement in upper concrete portion.

Behavior of lightweight aggregate concrete voided slabs

  • Adel A. Al-Azzawi;Ali O, AL-Khaleel
    • Computers and Concrete
    • /
    • v.32 no.4
    • /
    • pp.351-363
    • /
    • 2023
  • Reducing the self-weight of reinforced concrete structures problem is discussed in this paper by using two types of self-weight reduction, the first is by using lightweight coarse aggregate (crushed brick) and the second is by using styropor block. Experimental and Numerical studies are conducted on (LWAC) lightweight aggregate reinforced concrete slabs, having styropor blocks with various sizes of blocks and the ratio of shear span to the effective depth (a/d). The experimental part included testing eleven lightweight concrete one-way simply supported slabs, comprising three as reference slabs (solid slabs) and eight as styropor block slabs (SBS) with a total reduction in cross-sectional area of (43.3% and 49.7%) were considered. The holes were formed by placing styropor at the ineffective concrete zones in resisting the tensile stresses. The length, width, and thickness of specimen dimensions were 1.1 m, 0.6 m, and 0.12 m respectively, except one specimen had a depth of 85 mm (which has a cross-sectional area equal to styropor block slab with a weight reduction of 49.7%). Two shear spans to effective depth ratios (a/d) of (3.125) for load case (A) and (a/d) of (2) for load case (B), (two-line monotonic loads) are considered. The test results showed under loading cases A and B (using minimum shear reinforcement and the reduction in cross-sectional area of styropor block slab by 29.1%) caused an increase in strength capacity by 60.4% and 54.6 % compared to the lightweight reference slab. Also, the best percentage of reduction in cross-sectional area is found to be 49.7%. Numerically, the computer program named (ANSYS) was used to study the behavior of these reinforced concrete slabs by using the finite element method. The results show acceptable agreement with the experimental test results. The average difference between experimental and numerical results is found to be (11.06%) in ultimate strength and (5.33%) in ultimate deflection.

Efficient Switching Pattern to Decrease Switching Losses in Cascaded H-bridge PWM Multilevel Inverter (Cascaded H-bridge PWM 멀티레벨인버터의 스위칭 손실 저감을 위한 효율적인 스위칭 패턴)

  • Jeong, Bo Chang;Kim, Sun-Pil;Kim, Kwang Soo;Park, Sung-Jun;Kang, Feel-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.502-509
    • /
    • 2013
  • It presents an efficient switching pattern, which expects a reduction of switching losses in a cascaded H-bridge PWM multilevel inverter. By the proposed switching scheme, the lower H-bridge module operates at low frequency of 60[Hz] because it assigns to transfer most load power. The upper H-bridge module operates at high frequency of PWM switching to improve THD of output voltage. The proposed switching pattern applies to cascaded H-bridge multilevel inverter with PD, APOD, bipolar, and unipolar switching methods. By computer-aided simulations, we verify the validity of the proposed switching scheme. Finally, we prove that the proposed PD and APOD switching patterns are better than those of the conventional one in efficiency.

Broadband Mixer with built-in Active Balun for Dual-band WLAN Applications (이중대역 무선랜용 능동발룬 내장 광대역 믹서 설계)

  • Lee, Kang-Ho;Koo, Kyung-Heon
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.261-264
    • /
    • 2005
  • This paper presents the design of a down-conversion mixer with built-in active balun integrated in a $0.25\;{\mu}m$ pHEMT process. The active balun consists of series-connected common-gate FET and common-source FET. The designed balun achieved broadband characteristics by optimizing gate-width and bias condition for the reduction in parasitic effect. From DC to more than 6GHz, the active balun shows the phase error of less than 3 degree and the gain error of less than 0.4 dB. A single-balanced down-conversion mixer with built-in broadband active balun has been designed with optimum width, load resistor and bias for conversion gain and without any matching component for broadband operating. The designed mixer whose size of including on-chip bias circuit is $1\;mm{\times}1\;mm$ shows the conversion gain of better than 7 dB from 2 GHz to 6 GHz and $P_{1dB}$ of -10 dBm at 5.8 GHz

  • PDF