Shahbazi, Yaser;Delavari, Ehsan;Chenaghlou, Mohammad Reza
Smart Structures and Systems
/
v.13
no.1
/
pp.81-98
/
2014
This paper presents the elastic buckling of smart lightweight column structures integrated with a pair of surface piezoelectric layers using artificial intelligence. The finite element modeling of Smart lightweight columns is found using $ANSYS^{(R)}$ software. Then, the first buckling load of the structure is calculated using eigenvalue buckling analysis. To determine the accuracy of the present finite element analysis, a compression study is carried out with literature. Later, parametric studies for length variations, width, and thickness of the elastic core and of the piezoelectric outer layers are performed and the associated buckling load data sets for artificial intelligence are gathered. Finally, the application of soft computing-based methods including artificial neural network (ANN), fuzzy inference system (FIS), and adaptive neuro fuzzy inference system (ANFIS) were carried out. A comparative study is then made between the mentioned soft computing methods and the performance of the models is evaluated using statistic measurements. The comparison of the results reveal that, the ANFIS model with Gaussian membership function provides high accuracy on the prediction of the buckling load in smart lightweight columns, providing better predictions compared to other methods. However, the results obtained from the ANN model using the feed-forward algorithm are also accurate and reliable.
JSTS:Journal of Semiconductor Technology and Science
/
v.7
no.2
/
pp.76-81
/
2007
Threshold voltage ($V_{th}$) modeling of doublegate (DG) MOSFETs was performed, for the first time, by considering barrier lowering in the short channel devices. As the gate length of DG MOSFETs scales down, the overlapped charge-sharing length ($x_h$) in the channel which is related to the barrier lowering becomes very important. A fitting parameter ${\delta}_w$ was introduced semi-empirically with the fin body width and body doping concentration for higher accuracy. The $V_{th}$ model predicted well the $V_{th}$ behavior with fin body thickness, body doping concentration, and gate length. Our compact model makes an accurate $V_{th}$ prediction of DG devices with the gate length up to 20-nm.
This article derived a hybrid coupling technique using the higher-order displacement polynomial and three soft computing techniques (teaching learning-based optimization, particle swarm optimization, and artificial bee colony) to predict the optimal stacking sequence of the layered structure and the corresponding frequency values. The higher-order displacement kinematics is adopted for the mathematical model derivation considering the necessary stress and stain continuity and the elimination of shear correction factor. A nine noded isoparametric Lagrangian element (eighty-one degrees of freedom at each node) is engaged for the discretisation and the desired model equation derived via the classical Hamilton's principle. Subsequently, three soft computing techniques are employed to predict the maximum natural frequency values corresponding to their optimum layer sequences via a suitable home-made computer code. The finite element convergence rate including the optimal solution stability is established through the iterative solutions. Further, the predicted optimal stacking sequence including the accuracy of the frequency values are verified with adequate comparison studies. Lastly, the derived hybrid models are explored further to by solving different numerical examples for the combined structural parameters (length to width ratio, length to thickness ratio and orthotropicity on frequency and layer-sequence) and the implicit behavior discuss in details.
Accurate prediction of consolidation behaviors of the soft ground improved by plastic board drains is not easy because the consolidation characteristics of the improved ground has not been fully elucidated yet. The shape of drains is one of the most important factors which affect the consolidation characteristics of the improved ground. In this paper, a series of model consolidation tests of soft clay ground improved by plastic board drain were carried out, in order to investigate the effect of both plastic board width and stress level on consolidation characteristics of the improved ground. As the results, behaviors of both settlement and excess pore pressure dissipation were elucidated. Also, the non-uniform distribution of water content in the model ground was obtained. Then, in order to investigate the effect of vertical drainage on the consolidation behavior in the model tests, the comparison between experimental consolidation behaviors and Barron's theoretical ones were carried out. As the results, it was elucidated that the consolidation behavior in the model tests was affected not only by radial drainage but also by vertical drainage.
The Journal of the Korea institute of electronic communication sciences
/
v.19
no.5
/
pp.911-918
/
2024
This study developed and evaluated the performance of a machine learning-based model for predicting cucumber fruit set using cucumber growth data. In this study, plant height, node number, internode length, stem thickness, leaf length, leaf width, leaf count, and female flower count were used as independent variables, and the fruit set was set as the dependent variable to develop a prediction model. Various machine learning algorithms, including Linear Regression, Random Forest, XGBoost, Support Vector Regression (SVR), and K-Nearest Neighbors (KNN), were applied, and model performance was evaluated based on Mean Squared Error (MSE) and the coefficient of determination (R2). As a result, the Random Forest algorithm demonstrated the best performance, with an MSE of 3.91 and an R2 of 0.828, effectively capturing the non-linear relationships in the cucumber growth data. In particular, the Random Forest model showed robustness against outliers and proved to be highly effective in predicting fruit set.
The parametric array phenomenon refers to the generation of a high directivity low frequency wave from a small size radiation plate using the nonlinearity of the medium. In order to improve the usability of parametric array, the beam steering method of low frequency wave is researched, and the beam steering phenomenon is predicted easily using the PD (product directivity) model. However, the PD model can only be applied to Gaussian sources under quasi-linear conditions. Also, the prediction accuracy of low frequency wave beam width is poor. In this paper, a method for predicting the beam steering characteristics of a parametric array that can overcome the limitation of the PD model is investigated. For this purpose, the numerical analysis algorithm of the KZK (Khokhlov-Zabolotskaya-Kuzentsov) equation widely used for parametric array phenomenon prediction is improved. Thus, the beam steering characteristics are calculated by applying the electrical beam steering condition and comparing experimental results. As a result, the numerical analysis using the modified KZK equation algorithm in this study confirms that the beam steering phenomenon can be predicted even in a parametric array source that does not correspond to the quasi-linear condition.
Journal of Advanced Marine Engineering and Technology
/
v.38
no.7
/
pp.821-827
/
2014
In this study, an experimental study was performed to predict the two-phase frictional pressure drop of FC-72 in parallel micro-channels. The parallel micro-channels consist of 15 channels with depth 0.2 mm, width 0.45 mm and length 60 mm. And tests were performed in the ranges of mass fluxes from 152.2 to $584.2kg/m^2s$ and heat fluxes from 7.5 to $28.3kW/m^2$. The experimental data was compared and analyzed with existing correlations to predict the pressure drop. The existing methods to predict the pressure drop used the homogeneous model and the separated model. In this study, the new correlation was proposed by modified existing correlation using the separated model, and the new correlation predicted consequently with the experimental data within MAE of 9.6%.
Halo coronal mass ejections (CMEs) originating from solar activities give rise to geomagnetic storms when they reach the Earth. Variations in the geomagnetic field during a geomagnetic storm can damage satellites, communication systems, electrical power grids, and power systems, and induce currents. Therefore, automated techniques for detecting and analyzing halo CMEs have been eliciting increasing attention for the monitoring and prediction of the space weather environment. In this study, we developed an algorithm to sense and detect halo CMEs using large angle and spectrometric coronagraph (LASCO) C3 coronagraph images from the solar and heliospheric observatory (SOHO) satellite. In addition, we developed an image processing technique to derive the morphological and dynamical characteristics of halo CMEs, namely, the source location, width, actual CME speed, and arrival time at a 21.5 solar radius. The proposed halo CME automatic analysis model was validated using a model of the past three halo CME events. As a result, a solar event that occurred at 03:38 UT on Mar. 23, 2014 was predicted to arrive at Earth at 23:00 UT on Mar. 25, whereas the actual arrival time was at 04:30 UT on Mar. 26, which is a difference of 5 hr and 30 min. In addition, a solar event that occurred at 12:55 UT on Apr. 18, 2014 was estimated to arrive at Earth at 16:00 UT on Apr. 20, which is 4 hr ahead of the actual arrival time of 20:00 UT on the same day. However, the estimation error was reduced significantly compared to the ENLIL model. As a further study, the model will be applied to many more events for validation and testing, and after such tests are completed, on-line service will be provided at the Korean Space Weather Center to detect halo CMEs and derive the model parameters.
This study was carried out to determine traffic noise level and analyze noise reduction effects of various sound protection facilities in the area of Seoul, Inch'on, Songchoo and Seoul- Busan Expressway from March to Octover, 1987. The results were as follows; 1. As compared with the environmental standards and the traffic noise level in heavy noise areas, traffic noise levels observed were shown in higher than environmental standards. The noise levels in Seoul were determined at 12.8-18.2 dB(A) in daytime and 19.0-26.9 dB (A) in nighttime. And incase of inch'on, it were 6.7-9.6 dB(A) in daytime, 7.9-18.9 dB(A) in nighttime, respectively. 2. The environmental noise level observed in the backside of protection facilities, such as apartment, soundproof barrier and houses, which were constructed in paralled to the road was lower about 3-5 dB(A) than perpendicular to theroad. Noise recuction effect of upper stairs in apartment was higher than lower stairs. 3. The predicted noise level obtained from the equation $({\triangle}L\;=\; -10\;log\;(^{I'1}/Ii)\;was\;\pm\;1dB$ (A) and the correlation coefficient (r) was 0.923. 4. The noise reduction effect in backside of apartment was measured at on sites and predicted by total noise loss equation. The predicted noise level was 60.9 dB(A) and the measured level was 60.6 dB(A), respectively. 5. The narrow width landscape less than 10m width was almost no effect for the protection of traffic noise. According to the synthesis of the above results, the noise level of the road was exceeding mostly the environmental standard in the heavy traffic areas. The counterplan should be set as well. The insulation of noise protection facilities were effective by the location with near distance from the road edge. The reduction effect of double window in apartment was represented so much. The prediction model could be applied to estimate the noise levels in the roadside as well as the effectiveness for the noise protection facilities.
As an alternative measure to replace reactive stance with proactive one, a risk based management scheme has been commonly applied to enhance public satisfaction on water service by providing a higher creditable solution to handle a rehabilitation problem of pipe having high potential risk of leaks. This study intended to examine the feasibility of a simulation model to predict a recurrence probability of pipe leaks. As a branch of the data mining technique, probabilistic neural network (PNN) algorithm was applied to infer the extent of leaking recurrence probability of water network. PNN model could classify the leaking level of each unit segment of the pipe network. Pipe material, diameter, C value, road width, pressure, installation age as input variable and 5 classes by pipe leaking probability as output variable were built in PNN model. The study results indicated that it is important to pay higher attention to the pipe segment with the leak record. By increase the hydraulic pipe pressure to meet the required water demand from each node, simulation results indicated that about 6.9% of total number of pipe would additionally be classified into higher class of recurrence risk than present as the reference year. Consequently, it was convinced that the application of PNN model incorporated with a data base management system of pipe network to manage municipal water distribution network could make a promise to enhance the management efficiency by providing the essential knowledge for decision making rehabilitation of network.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.