• Title/Summary/Keyword: Width or back-bead

Search Result 4, Processing Time 0.02 seconds

Selection of Optimal Welding Condition in Root-pass Welding of V-groove Butt Joint (맞대기 V-그루브 이음 초층 용접에서 최적의 용접조건 선정)

  • Yun, Seok-Chul;Kim, Jae-Woong
    • Journal of Welding and Joining
    • /
    • v.27 no.1
    • /
    • pp.95-101
    • /
    • 2009
  • In case of manufacturing the high quality welds or pipeline, the full penetration weld has to be made along the weld joint. Thus the root pass welding is very important and has to be selected carefully. In this study, an experimental method for the selection of optimal welding condition was proposed in the root pass welding which was done along the V-grooved butt weld joint. This method uses the response surface analysis in which the width and height of back bead were chosen as the quality variables of the weld. The overall desirability function, which is the combined desirability function for the two quality variables, was used as the objective function for getting the optimal welding condition. In the experiments, the target values of the back bead width and the height are 6mm and zero respectively for the V-grooved butt weld joint of 8mm thickness mild steel. The optimal welding conditions could predict the back bead profile(bead width and height) as 6.003mm and -0.003mm. From a series of welding test, it was revealed that a uniform and full penetration weld bead can be obtained by adopting the optimal welding condition which was determined according to the method proposed.

The Back-bead Prediction Comparison of Gas Metal Arc Welding (아크 용접의 이면비드 예측 비교)

  • Lee, Jeong-Ick;Koh, Byung-Kab
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.81-87
    • /
    • 2007
  • It is important to investigate the relationship between weld process parameters and weld bead geometry for adaptive arc robot welding. However, it is difficult to predict an exact back-bead owing to gap in process of butt welding. In this paper, the quantitative prediction system to specify the relationship external weld conditions and weld bead geometry was developed to get suitable back-bead in butt welding which is widely applied on industrial field. Multiple regression analysis and artificial neural network were used as the research methods. And, the results of two prediction methods were compared and analyzed.

Control of Molten Pool by Physical Force of Bead Former in TIG Welding of Overhead and Inclined-up Position (위보기 및 경사상진자세의 TIG 용접에서 비드 성형기의 물리적 힘에 의한 용융지 제어)

  • Ham, Hyo-Sik;Ha, Jong-Moon;Lee, Byung-Woo;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.28 no.6
    • /
    • pp.21-27
    • /
    • 2010
  • Due to excellent weld quality, orbital welding with TIG is widely applied to pipe welding. But concave back bead is formed easily in overhead and inclined-up position of butt orbital welding. It is difficult to find a paper to overcome this problem. In this study, in order to make convex back bead in overhead and inclined-up position of pipe 5G welding, control method of molten pool was actively investigated. Melt run welds were conducted on thickness 4.0mm SS400 with overhead and inclined-up position and was observed the variation of bead shape after welding with the bead former developed. The height of back bead showed the trend of increase as the distance from molten pool to the bead former was decreased. Also, there is no trend in the bead width of front and back as welding position was changed or the distance from molten pool to the bead former was decreased.

Determination of Optimal Welding Parameter for an Automatic Welding in the Shipbuilding

  • Park, J.Y.;Hwang, S.H.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.17-22
    • /
    • 2001
  • Because the quantitative relationships between welding parameters and welding result are not yet blown, optimal values of welding parameters for $CO_2$ robotic arc welding is a difficult task. Using the various artificial data processing methods may solve this difficulty. This research aims to develop an expert system for $CO_2$ robotic arc welding to recommend the optimal values of welding parameters. This system has three main functions. First is the recommendation of reasonable values of welding parameters. For such work, the relationships in between the welding parameters are investigated by the use of regression analysis and fuzzy system. The second is the estimation of bead shape by a neural network system. In this study the welding current voltage, speed, weaving width, and root gap are considered as the main parameters influencing a bead shape. The neural network system uses the 3-layer back-propagation model and a generalized delta rule as teaming algorithm. The last is the optimization of the parameters for the correction of undesirable weld bead. The causalities of undesirable weld bead are represented in the form of rules. The inference engine derives conclusions from these rules. The conclusions give the corrected values of the welding parameters. This expert system was developed as a PC-based system of which can be used for the automatic or semi-automatic $CO_2$ fillet welding with 1.2, 1.4, and 1.6mm diameter the solid wires or flux-cored wires.

  • PDF