• Title/Summary/Keyword: Width of Green Area

Search Result 83, Processing Time 0.022 seconds

Effects of Halogen and Light-Shielding Curtains on Acquisition of Hyperspectral Images in Greenhouses (온실 내 초분광 영상 취득 시 할로겐과 차광 커튼이 미치는 영향)

  • Kim, Tae-Yang;Ryu, Chan-Seok;Kang, Ye-seong;Jang, Si-Hyeong;Park, Jun-Woo;Kang, Kyung-Suk;Baek, Hyeon-Chan;Park, Min-Jun;Park, Jin-Ki
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.306-315
    • /
    • 2021
  • This study analyzed the effects of light-shielding curtains and halogens on spectrum when acquiring hyperspectral images in a greenhouse. The image data of tarp (1.4*1.4 m, 12%) with 30 degrees of angles was achieved three times with four conditions depending on 14 heights using the automatic image acquisition system installed in the greenhouse at the department of Southern Area of National Institute of Crop Science. When the image was acquired without both a light-shielding curtain and halogen lamp, there was a difference in spectral tendencies between direct light and shadow parts on the base of 550 nm. The average coefficient of variation (CV) for direct light and shadow parts was 1.8% and 4.2%, respective. The average CV value was increased to 12.5% regardless of shadows. When the image was acquired only used a halogen lamp, the average CV of the direct light and shadow parts were 2 .6% and 10.6%, and the width of change on the spectrum was increased because the amount of halogen light was changed depending on the height. In the case of shading curtains only used, the average CV was 1.6%, and the distinction between direct light and shadows disappeared. When the image was acquired using a shading curtain and halogen lamp, the average CV was increased to 10.2% because the amount of halogen light differed depending on the height. When the average CV depending on the height was calculated using halogen and light-shielding curtains, it was 1.4% at 0.1m and 1.9% at 0.2 m, 2 .6% at 0.3m, and 3.3% at 0.4m of height, respectively. When hyperspectral imagery is acquired, it is necessary to use a shading curtain to minimize the effect of shadows. Moreover, in case of supplementary lighting by using a halogen lamp, it is judged to be effective when the size of the object is less than 0.2 m and the distance between the object and the housing is kept constant.

Mitigation Effects of Foliar-Applied Hydrogen Peroxide on Drought Stress in Sorghum bicolor (과산화수소 엽면 처리에 의한 수수에서 한발 스트레스 완화 효과)

  • Shim, Doo-Do;Lee, Seung-Ha;Chung, Jong-Il;Kim, Min Chul;Chung, Jung-Sung;Lee, Yeong-Hun;Jeon, Seung-Ho;Song, Gi-Eun;Shim, Sang-In
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.2
    • /
    • pp.113-123
    • /
    • 2020
  • Global climatic change and increasing climatic instability threaten crop productivity. Due to climatic change, drought stress is occurring more frequently in crop fields. In this study, we investigated the effect of treatment with hydrogen peroxide (H2O2) before leaf development on the growth and yield of sorghum for minimizing the damage of crops to drought. To assess the effect of H2O2 on the growth of sorghum plant, 10 mM H2O2 was used to treat sorghum leaves at the 3-leaf stage during growth in field conditions. Plant height, stem diameter, leaf length, and leaf width were increased by 7.6%, 9.6%, 8.3% and 11.5%, respectively. SPAD value, chlorophyll fluorescence (Fv/Fm), photosynthetic rate, stomatal conductance, and transpiration rate were increased by 3.0%, 4.9%, 26.0%, 23.4% and 12.7%, respectively. The amount of H2O2 in the leaf tissue of sorghum plant treated with 10 mM H2O2 was 0.7% of the applied amount after 1 hour. The level increased to approximately 1.0% after 6 hours. The highest antioxidant activity measured by the Oxygen Radical Absorbance Capacity assay was 847.3 µmol·g-1 at 6 hour after treatment. However, in the well-watered condition, the concentration of H2O2 in the plant treated by the foliar application of H2O2 was 227.8 µmol·g-1 higher than that of the untreated control. H2O2 treatment improved all the yield components and yield-related factors. Panicle length, plant dry weight, panicle weight, seed weight per plant, seed weight per unit area, and thousand seed weight were increased by 8.8%, 18.0%, 24.4%, 24.7%, 29.9% and 7.1%, respectively. Proteomic analysis showed that H2O2 treatment in sorghum increased the tolerance to drought stress and maintained growth and yield by ameliorating oxidative stress.

Variation of Growth Characteristics and Quality Related Components in Korean Indigenous Tea (Camellia sinensis) Germplasms (한국 재래종 차나무(Camellia sinensis)의 작물학적 특성 및 품질관련 성분 변이)

  • Lee, Min-Seuk;Lee, Jin-Ho;Lee, Jeong-Dae;Hyun, Jin-Wuk;Kim, Young-Gul;Hwang, Young-Sun;Lee, Hyeon-Jin;Choi, Su-San-Na;Lee, Su-Jin;Choung, Myoung-Gun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.3
    • /
    • pp.333-338
    • /
    • 2008
  • The tea has traditionally been used as a foodstuff by unique flavor, however recently not only the diversity of consumer demands but also the public interest in unique favorite and functional aspects have increased. It has been also reported that the main components contained in the leaves of tea (Camellia sinensis) include total nitrogen, free amino acids, polyphenols, and fiber, of which catechin has powerful bioactive effect such as anti-cancer, anti-aging, and anti-diabetic. (-)-Epigallocatechin gallate (EGCG) which is a major phenolic constituent of green tea extract has received considerable attention for a variety of important bioactivities. This study was carried out to obtain useful information for tea breeding programs, and to investigate the concentration of quality and functional related components in Korean indigenous tea germplasms. Korean indigenous tea lines were classified into three groups of sprout time, i.e, early, medium and late sprout time, and the ratio were 20%, 43% and 37%, respectively. There was a difference in characteristics among these Korean indigenous tea lines, leaf width of those ranged from 19.8 to 75 mm, leaf length was 35.5-160.0 mm, and leaf area was $660-8,400\;mm^2$. Experimental data on chlorophyll content (SPAD value) of Korean indigenous tea genetic resources ranged from 51.3 to 82.3. The concentrations of the total nitrogen, total free amino acids, and theanine were ranged 4.18-6.07%, 2.87-4.58%, and 1.64-2.66%, respectively. Also, catechin concentration showed from 11.54 to 15.07%, and concentration of caffeine was 2.82-4.23%. These results indicated indicated that it is possible to select elite lines with high concentration of quality related components and low concentration of caffeine from Korean domestic tea germplasms.