• 제목/요약/키워드: Width load

검색결과 1,044건 처리시간 0.029초

스파이럴 그루브 스러스트 베어링의 부하용량 향상을 위한 설계 변수에 대한 연구 (A Study on Design Parameters to Improve Load Capacity of Spiral Grooved Thrust Bearing)

  • 강지훈;김경웅
    • Tribology and Lubricants
    • /
    • 제18권3호
    • /
    • pp.181-186
    • /
    • 2002
  • A numerical analysis is undertaken to show the influence of bearing design parameters on the load capacity of air lubricated spiral grooved thrust bearing. The governing equation derived from the mass balance is solved by the finite difference method. Optimal values for various design parameters are obtained to maximize the load capacity. The design parameters are the groove angle, the groove width ratio, the groove height ratio, and the seal ratio.

복합적층 박스거더의 유효폭 산정을 위한 기초연구 (A Fundamental Study on Effective Width Evaluation of Laminated Composite Box Girder)

  • 천경식;지효선;박원태
    • 복합신소재구조학회 논문집
    • /
    • 제6권3호
    • /
    • pp.26-31
    • /
    • 2015
  • The domestic and foreign specifications presented the effective width based on flange length to width ratio only. The existing paper on the effective width grasped of the effect of span, load type and cross-section properties, but localized steel bridges. Recently, The studies are going on in progress for the application of fiber reinforced composite material in construction field. Therefore, it is required to optimum design that have a good grasp the deformation characteristic of the displacements and stresses distribution and predict variation of the effective width for serviceability loading. This research addresses the effective width of all composite material box girder bridges using the finite element method. The characteristics of the effective width of composite structures may vary according to several causes, e.g., change of fibers, aspect, etc. Parametric studies were conducted to determine the effective width on the stress elastic analysis of all composite materials box bridges, with interesting observations. The various results through numerical analysis will present an important document for construct all composite material bridges.

치조골 폭경과 임플랜트 고정체의 직경에 따른 지지조직의 응력분포 (STRESS ANALYSIS OF SUPPORTING TISSUES ACCORDING TO IMPLANT FIXTURE DIAMETER AND RESIDUAL ALVEOLAR BONE WIDTH)

  • 한상운;방몽숙;양홍서;박상원;박하옥;임현필
    • 대한치과보철학회지
    • /
    • 제45권4호
    • /
    • pp.506-521
    • /
    • 2007
  • Statement of problem: The cumulative success rate of wide implant is still controversial. Some previous reports have shown high success rate, and some other reports shown high failure rate. Purpose: The aim of this study was to analyze, and compare the biomechanics in wide implant system embeded in different width of crestal bone under different occlusal forces by finite element approach. Material and methods: Three-dimensional finite element models were created based on tracing of CT image of second premolar section of mandible with one implant embedded. One standard model (6mm-crestal bone width, 4.0mm implant diameter central position) was created. Varied crestal dimension(4, 6, 8 mm), different diameter of implants(3.3, 4.0, 5.5, 6.0mm), and buccal position implant models were generated. A 100-N vertical(L1) and 30 degree oblique load from lingual(L2) and buccal(L3) direction were applied to the occlusal surface of the crown. The analysis was performed for each load by means of the ANSYS V.9.0 program. Conclusion: 1. In all cases, maximum equivalent stress that applied $30^{\circ}$ oblique load around the alveolar bone crest was larger than that of the vertical load. Especially the equivalent stress that loaded obliquely in buccal side was larger. 2. In study of implant fixture diameter, stress around alveolar bone was decreased with the increase of implant diameter. In the vertical load, as the diameter of implant increased the equivalent stress decreased, but equivalent stress increased in case of the wide implant that have a little cortical bone in the buccal side. In the lateral oblique loading condition, the diameter of implant increased the equivalent stress decreased, but in the buccal oblique load, there was not significant difference between the 5.5mm and 6.0mm as the wide diameter implant. 3. In study of alveolar bone width, equivalent stress was decreased with the increase of alveolar bone width. In the vertical and oblique loading condition, the width of alveolar bone increased 6.0mm the equivalent stress decreased. But in the oblique loading condition, there was not a difference equivalent stress at more than 6.0mm of alveolar bone width. 4. In study of insertion position of implant fixture, even though the insertion position of implant fixture move there was not a difference equivalent stress, but in the case of little cortical bone in the buccal side, value of the equivalent stress was most unfavorable. 5. In all cases, it showed high stress around the top of fixture that contact cortical bone, but there was not a portion on the bottom of fixture that concentrate highly stress and play the role of stress dispersion. These results demonstrated that obtaining the more contact from the bucco-lingual cortical bone by installing wide diameter implant plays an important role in biomechanics.

I형 프리스트레스트 콘크리트 거더교의 활하중 분배 (Live Load Distribution in Prestressed Concrete I-Girder Bridges)

  • 김광양;강대희;이환우
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.288-293
    • /
    • 2008
  • The standard prestressed concrete I-girder bridge (PSC I-girder bridge) is one of the most prevalent types for small and medium bridges in Korea. When determining the member forces in a section to assess the safety of girder in this type of bridge, the general practice is to use the simplified practical equations or the live load distribution factors proposed in design standards rather than the precise analysis through the finite element method or so. Meanwhile, the live load distribution factors currently used in Korean design practice are just a reflection of overseas research results or design standards without alterations. Therefore, it is necessary to develop an equation of the live load distribution factors fit for the design conditions of Korea, considering the standardized section of standard PSC I-girder bridges and the design strength of concrete. In this study, to develop an equation of the live load distribution factors, a parametric analysis and sensitivity analysis were carried out on the parameters such as width of bridge, span length, girder spacing, width of traffic lane, etc. Then, an equation of live load distribution factors was developed through the multiple linear regression analysis on the results of parametric analysis. When the actual practice engineers design a bridge with the equation of live load distribution factors developed here, they will determine the design of member forces ensuring the appropriate safety rate more easily. Moreover, in the preliminary design, this model is expected to save much time for the repetitive design to improve the structural efficiency of PSC I-girder bridges.

  • PDF

Evaluation of Crack Propagation and Post-cracking Hinge-type Behavior in the Flexural Response of Steel Fiber Reinforced Concrete

  • Gali, Sahith;Subramaniam, Kolluru V.L.
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권2호
    • /
    • pp.365-375
    • /
    • 2017
  • An experimental evaluation of crack propagation and post-cracking behavior in steel fiber reinforced concrete (SFRC) beams, using full-field displacements obtained from the digital image correlation technique is presented. Surface displacements and strains during the fracture test of notched SFRC beams with volume fractions ($V_f$) of steel fibers equal to 0.5 and 0.75% are analyzed. An analysis procedure for determining the crack opening width over the depth of the beam during crack propagation in the flexure test is presented. The crack opening width is established as a function of the crack tip opening displacement and the residual flexural strength of SFRC beams. The softening in the post-peak load response is associated with the rapid surface crack propagation for small increases in crack tip opening displacement. The load recovery in the flexural response of SFRC is associated with a hinge-type behavior in the beam. For the stress gradient produced by flexure, the hinge is established before load recovery is initiated. The resistance provided by the fibers to the opening of the hinge produces the load recovery in the flexural response.

Influence of slenderness on axially loaded square tubed steel-reinforced concrete columns

  • Yan, Biao;Gan, Dan;Zhou, Xuhong;Zhu, Weiqing
    • Steel and Composite Structures
    • /
    • 제33권3호
    • /
    • pp.375-388
    • /
    • 2019
  • This paper aims to investigate the axial load behavior and stability strength of square tubed steel-reinforced concrete (TSRC) columns. Unlike concrete filled steel tubular (CFST) column, the outer steel tube of a TSRC column is mainly used to provide confinement to the core concrete. Ten specimens were tested under axial compression, and the main test variables included length-to-width ratio (L/B) of the specimens, width-to-thickness ratio (B/t) of the steel tubes, and with or without stud shear connectors on the steel sections. The failure mode, ultimate strength and load-tube stress response of each specimen were summarized and analyzed. The test results indicated that the axial load carried by square tube due to friction and bond of the interface increased with the increase of L/B ratio, while the confinement effect of tube was just the opposite. Parametric studies were performed through ABAQUS based on the test results, and the feasibility of current design codes has also been examined. Finally, a method for calculating the ultimate strength of this composite column was proposed, in which the slenderness effect on the tube confinement was considered.

Toward an accurate effective flange width of composite beams

  • Olowokere, David;Bilal, Can M.
    • Structural Engineering and Mechanics
    • /
    • 제2권2호
    • /
    • pp.197-210
    • /
    • 1994
  • Presented in this paper is the rigorous analysis for the determination of effective flange width for composite beams. To make the solution suitable for routine design, formulas and tables for determining effective flange width for varying load types and geometric shapes are suggested. A variety of effective flange width problems for simple and continuous T- and I-beams can be solved by these tables and formulas. Although they are derived for T- and I-beams with symmetrical shapes, flanges and loads, they can be applied for non-symmetrical cases. Typical numerical examples are given to show how to use the formulas and tables; and their validity and accuracy are assessed by comparison with other known results that are based on the American Codes AISC, AASHTO and ACI.

The behavior of concrete filled steel tubular columns infilled with high-strength geopolymer recycled aggregate concrete

  • Rajai Z. Al-Rousan;Haneen M. Sawalha
    • Steel and Composite Structures
    • /
    • 제51권6호
    • /
    • pp.661-678
    • /
    • 2024
  • The utilization of geopolymer recycled aggregate concrete (GRAC) as the infilled core of the concrete-filled steel tubular (CFST) columns provides superior economic and environmental benefits. However, limited research exists within the field of geopolymer recycled aggregate concrete considered a green and sustainable material, in addition to the limitation of the design guidelines to predict the behavior of such an innovative new material combination. Moreover, the behavior of high-strength concrete is different from the normal-strength one, especially when there is another material of high-strength properties, such as the steel tube. This paper aims to investigate the behavior of the axially loaded square high-strength GRACFST columns through the nonlinear finite element analysis (NLFEA). A total of thirty-two specimens were simulated using ABAQUS/Standard software with three main variables: recycled aggregate replacement ratio (0, 30, and 50) %, width-to-thickness ratios (52.0, 32.0, 23.4, and 18.7), and length-to-width ratio (3, 5, 9, and 12). During the analysis, the response in terms of the axial load versus the longitudinal strain was recorded and plotted. In addition, various mechanical properties were calculated and analyzed. In view of the results, it has been demonstrated that the mechanical properties of high-strength GRACFST columns such as ultimate load-bearing capacity, compressive stiffness, energy absorption capacity, and ductility increase with the increase of the steel tube thickness owing to the improvement of the confinement effect of the steel tube. In contrast, the incorporation of the recycled aggregate adversely affected the mentioned properties except the ductility, while the increase of the recycled aggregate replacement ratio improved the column's ductility. Moreover, it has been found that the increase in the length-to-width ratio significantly reduced both the failure strain and the energy absorption capacity. Finally, the obtained NLFEA results of the ultimate load-bearing capacity were compared with the corresponding predicted capacities by numerous codes. It has been concluded that AISC, ACI, and EC give conservative predictions for the ultimate load-bearing capacity since the confinement effect was not considered by these codes.

스파이럴 그루브 형상의 스러스트 베어링의 부하용량 향상을 위한 설계 변수에 대한 연구 (A Study on Design Parameters to Improve Load Capacity of Spiral Grooved Thrust Bearing)

  • 강지훈;김경웅
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제33회 춘계학술대회 개최
    • /
    • pp.257-262
    • /
    • 2001
  • A numerical analysis is undertaken to show tile influence of bearing design parameters on tile load capacity of air lubricated spiral grooved thrust bearing. The governing equation derived from the mass balance is solved by the finite difference method. Optimal values for various design parameters are obtained to maximize the load capacity. The design parameters are the groove angle, the groove width ratio, the groove height ratio, arid the seal ratio.

  • PDF

Beam형(形) Load Cell의 FEM Simulation과 그 전기적특성(電氣的特性) (Electrical Characteristics and FEM Simulations of Beam Type Load Cell)

  • 박찬원;안광희;최규석
    • 산업기술연구
    • /
    • 제12권
    • /
    • pp.25-36
    • /
    • 1992
  • In this paper, we simulate and calculate the stress and output voltage of the beam structure load cells by using FEM as varing physical structure parameters and loading positions. It is proved that stress enhance as the increase of the notch pitch and radius of the load cell, but decrease as the increase of the notch thickness and beam width. The results are good matched for basic formulas of the single fixed beam, and are verified our simulation is correct. Also, it is found that the stress characteristics of the load cell is varied according to loading positions with structure parameters, and caculated output voltage of the load cell approximate to those of the real manufactured ones. As a result, this study will offer efficient design and analysis technique for making special and variety capacity of load cells.

  • PDF