• 제목/요약/키워드: Widmanstatten

검색결과 28건 처리시간 0.024초

Fe-Ni-Mn-(Ti)계 마르에이징강에서 역변태 오스테나이트의 거동 (Behavior of Reverted Austenite in Fe-Ni-Mn-(Ti) Maraging Steels)

  • 김성준
    • 분석과학
    • /
    • 제6권1호
    • /
    • pp.141-147
    • /
    • 1993
  • Fe-Ni-Mn-(Ti)계 마르에이징강을 용체화처리한 후 $400^{\circ}C$부터 $550^{\circ}C$ 사이에서 장시간 시효처리할 때 생성되는 역변태 오스테나이트의 거동을 투과전자현미경 및 분석전자현미경을 이용하여 관찰하였다. 시효온도와 시간에 따라 Widmanstatten, granular, lath-like 및 재결정 오스테나이트 등 4 종류의 역변태 오스테나이트가 관찰되었으며, 역변태 오스테나이트들은 기지조직인 마르텐사이트보다 많은 니켈과 망간을 함유하고 있었다. Widmanstatten과 lath-like 오스테나이트는 기지 조직과 일정한 방위관계를 이루고 있으며 방위관계는 시효조건과 합금조성에 따라 달라진다. 재결정 오스테나이트는 $550^{\circ}C$ 이상의 고온에서 시효할 때 생기지만 불안정하여 냉각시 다시 마르텐사이트로 변태되는 경우도 발견되었다.

  • PDF

티타늄 합금(Ti-6Al-4V)의 조직변화에 따른 기계적 특성 평가 (The Evaluation of Mechanical Properties on the Changes of Microstructure for Titanium Alloy (Ti-6Al-4V))

  • 권재도;배용탁;최성종
    • 대한기계학회논문집A
    • /
    • 제26권4호
    • /
    • pp.609-616
    • /
    • 2002
  • The characteristics of mechanical behavior are investigated for Ti-6Al-4V alloy. Four kinds of the specimens are prepared under different heat treatments in order to produce different microstructures. In the present investigations, impact, tensile and fatigue crack growth tests are performed for each test specimen. The results obtained through the investigations are compared. Additionally fr actal dimensions of crack pass are obtained using the box counting method. The results are, 1) the microstructures shows as equiaxed, bimodal and Widmanstatten microstructures respectively, 2) the impact energy and elongation are superior fur the bimodal microstructure, and the hardness and tensile strength are superior fur the Widmanstatten microstructure, 3) the fatigue crack growth rate is similar to all microstructures in low ΔK region while that of equiaxed microstructure is the largest, and that of Widmanstatten microstructure is the lowest in high ΔK region respectively, 4) the fractal dimension D of Widmanstatten microstructure shows higher value than that of the equiaxed and bimodal microstructures under 200 magnification view of the SEM micrographs.

2중 용체화처리에 따른 Ti-6AI-4V합금의 미세조직과 인장특성 (Microstructures and Tensile Characteristics of Ti-6AI-4V Alloy by Double Solution Treatment)

  • 최형진;이준희
    • 한국재료학회지
    • /
    • 제4권6호
    • /
    • pp.626-637
    • /
    • 1994
  • Ti-6Ai-4V 합금의 미세조직을 용체화처리온도 및 냉각속도만의 변화로서 Widmanstatten 조직과 이중조직을 얻은 후 이들 미세조직과 인장성질고의 비교. 검토를 통해서 최적 열처리 방안을 설정하고자 하였다. 그 결과 Widmanstatten 조직에 있어서는 열처리온도나 냉각속도에 따라 복잡하고 무질서한 dege형상의 $\alpha$상 및 등축화된 $\alpha$상으로변화시킬 수 있었으며, $\alpha$+$\beta$ 영역에서 2중 용체화 처리의 경우 1차 및 2차 용체화처리 온도가 낮을수록 aspect비는 작아짐을 알 수 있었다. 인장성질에 있어서 Widmanstatten 조직은 이중조직에 비해 강도는 감소하고 연성성질 또한 크게 감소하였으며, 파단양상 Widmanstatten 조직의 경우 준벽개와 dimple형 파단양상이 함께 나타나는 반면 이중조직은 연성파괴를 나타내었다. 또한 이중조직의 파단면을 인장축에 수직인 내부균열영역과 45˚ 정도의 전단각을 갖는 shear lip영역으로 나누어 관찰할 수 있었다.

  • PDF

Ti-6Al-4V 합금의 미세조직에 따른 정적 및 동적 변형에 관한 연구 (The Effect of Microstructure on the Static and Dynamic Deformation Behavior of Ti-6Al-4V Alloy)

  • 이동근;이유환;이성학;허선무;이종수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.277-280
    • /
    • 2001
  • The effects of a -phase morphology on the static and dynamic deformation behavior of a Ti-6Al-4V alloy was investigated in this study. Static tension test, static and dynamic tension test and hot compression test were conducted on three microstructures of Ti-6Al-4V alloy, i.e., equiaxed, widmanstatten and bimodal microstructures. Fracture surfaces of all three microstructures represented ductile fracture appearance, though the formation of adiabatic shear bands was noticed at dynamic torsion test. The susceptibility of forming adiabatic shear bands was greatest in the equiaxed microsoucture and lowest in the bimodal microstructure, which was evidenced by hot compression test.

  • PDF

Ti-6Al-4V 합금의 고온성형 시 미세조직 예측에 관한 연구 (Prediction of microstructure during high temperature forming of Ti-6Al-4V alloy)

  • 이유환;신태진;황상무;이종수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.57-60
    • /
    • 2003
  • The purpose of this study is to investigate the high temperature deformation behavior of Ti-6Al-4V alloy and to predict the final microstructure under given forming conditions. Equiaxed and widmanstatten of Ti-6Al-4V alloys were prepared as initial microstructure and the compression tests were performed to obtain the flow curves at high temperatures (700∼1100$^{\circ}C$) and various strain rates (10$\^$-4/∼10$^2$/s). Form the results of compression test various parameters such as strain rate sensitivity (m) and activation energy (Q) were calculated and used to establish constitutive equations. To predict the final microstructure after forming, finite element analysis was performed considering the microstructural parameters such as the grain size and the volume fraction of second phase.

  • PDF

저항 업셋 용접방식에 따른 Zircaloy-4 핵연료 피복재 용접부의 미세조직 특성 (Microstructural Characteristics of Zircaloy-4 Nuclear Fuel Cladding Welds by Resistance Upset Welding Processes)

  • 고진현;김상호;박춘호;김수성
    • Journal of Welding and Joining
    • /
    • 제20권3호
    • /
    • pp.98-104
    • /
    • 2002
  • A study on microstructures of welds for Zircaloy-4 sheath end closure by the resistance upset welding methods was carried out. Two upset welding process variations such as magnetic farce and multi-impulse resistance welding were used. Grain size and microhardness across welds were analysed in terms of welding parameters. Magnetic farce resistance weld with one cycle of unbalanced mode has smaller upset length and $\alpha-grain$ size in heat affected zone than those of multi-impulse resistance weld because of lower heat input and shorter welding time. Heat affected zone formed by two upset resistance welding variations revealed fine Widmanstatten structure or martensitic ${\alpha}'$ structure due to the high heating rate and foster cooling rate. Magnetic force resistance welds showed recrystallized grains before grain growth, whereas multi-impulse resistance welds showed full grain growth.

Ti-6Al-4V 합금의 고온성형시 미세조직 예측에 관한 연구 (Prediction of Microstructure During High Temperature Forming of Ti-6Al-4V Alloy)

  • 이유환;신태진;황상무;박노광;심인옥;이종수
    • 소성∙가공
    • /
    • 제12권4호
    • /
    • pp.290-295
    • /
    • 2003
  • High temperature deformation behavior and prediction of final microstructure after forming of Ti-6Al-4V alloy were investigated in this study. Equiaxed and Widmanstatten microstructures of Ti-6Al-4V alloys were prepared as initial microstructures and compression tests were performed to obtain the flow curves at high temperatures (700∼110$0^{\circ}C$) and various strain rates (10$^{-4}$ ∼10$^2$/s). From the results of compression test, strain rate sensitivity (m) and activation energy (Q) were calculated and used to establish constitutive equation. To predict the final microstructure after farming, finite element analysis was performed considering the microstructural parameters such as grain size and volume fraction of second phase.

Ti-6AI-4V 합금의 ECAP 가공에 따른 미세조직의 변화 (Microstructural Evolution during the Equal Channel Angular Pressing of Ti-6Al-4V Alloy)

  • 고영건;정원식;신동혁;이종수
    • 소성∙가공
    • /
    • 제11권6호
    • /
    • pp.519-528
    • /
    • 2002
  • The microstructural evolution during the equal channel angular pressing of Ti-6Al-4V alloy was investigated using the transmission electron microscopy (TEM). ECA pressing was carried out isothermally with route C at $600^{\circ}C$ for two types of initial microstructure, i.e., equiaxed and Widmanstatten microstructures. At an initial stage of ECA pressing, the equiaxed microstructure showed more uniform flow than the Widmanstatten microstructure. However, both microstructures were significantly refined revealing nearly equiaxed grains of 0.3$mu extrm{m}$ in diameter with high angle grain boundaries after 4 passes of ECA pressing. These ultrafine gains were found to be stable with little grain growth, when annealed up to $600^{\circ}C$ for 1hr.

다층 FCA 용착금속의 수소취성 저항성 및 확산성 수소 방출 거동 (Hydrogen Embrittlement Resistance and Diffusible Hydrogen Desorption Behavior of Multipass FCA Weld Metals)

  • 유재석;곽현;이명진;김용덕;강남현
    • Journal of Welding and Joining
    • /
    • 제31권6호
    • /
    • pp.112-118
    • /
    • 2013
  • In this study, constant loading test (CLT) was performed to evaluate the hydrogen embrittlement resistance for multipass FCA weld metals of 600MPa tensile strength grade. The microstructures of weld metal-2 having the smallest carbon equivalent (Ceq=0.37) consisted of grain boundary ferrite and widmanstatten ferrite in the acicular ferrite matrix. The weld metal-1 having the largest Ceq=0.47, showed the microstructures of grain boundary ferrite, widmanstatten ferrite and the large amount of bainite (vol.%=19%) in the acicular ferrite matrix. The weld metal-3 having the Ceq=0.41, which was composed of grain boundary ferrite, widmanstatten ferrite, and the small amount of bainite (vol.%=9%) in the acicular ferrite matrix. Hydrogen desorption spectrometry (TDS) used to analyze the amount of diffusible hydrogen and trapping site for the hydrogen pre-charged specimens electrochemically for 24 hours. With increasing the current density of hydrogen pre-charging, the released amount of diffusible hydrogen was increased. Furthermore, as increasing carbon equivalent of weld metals, the released diffusible hydrogen was increased. The main trapping sites of diffusible hydrogen for the weld metal having a low carbon equivalent (Ceq=0.37) were grain boundaries and those of weld metals having a relatively high carbon equivalent (Ceq: 0.41~0.47) were grain boundaries and dislocation. The fracture time for the hydrogen pre-charged specimens in the constant loading test was decreased as the carbon equivalent increased from 0.37 to 0.47. This result is mainly due to the increment of bainite that is vulnerable to hydrogen embrittlement.

Cu 첨가된 Zr-Nb계 합금에서 열처리조건이 미세조직과 내식성에 미치는 영향 (Effects of Heat Treatment Conditions on Microstructure and Corrosion Resistance of Cu-contained Zr-Nb Alloy)

  • 최병권;백종혁;정용환
    • 열처리공학회지
    • /
    • 제17권4호
    • /
    • pp.223-229
    • /
    • 2004
  • The effects of the cooling and annealing conditions on the microstructures and corrosion properties were investigated for the Cu-contained Zr-Nb alloy (Zr-1.1Nb-0.07Cu). After annealing at $1050^{\circ}C$ for 15 min, the specimens were cooled by three methods of water quenching, air cooling, and furnace cooling. Widmanstatten structures were developed in both air- and furnace-cooled specimens, and the Widmanstatten plate width of the furnace-cooled specimens was wider than that of the air-cooled ones. The weight gain in the furnace-cooling case was higher than that in the air-cooling case. This could be the reason why the diffusion time was more enough during the furnace cooling than the air cooling. The oxide of the furnace-cooled specimen was nonunformly formed just beneath the Widmanstatten plate boundaries, where ${\beta}_{Zr}$ phases were exised concentrately. Compared with the $640^{\circ}C$ annealing after the water quenching, the $570^{\circ}C$ annealing could make the ${\beta}_{Nb}$ phases and a concomitant reduction of the Nb in the matrix, and then it could improve the corrosion resistance with the increase of the annealing time. It would be concluded that the corrosion resistance of the Zr-1.1Nb-0.07Cu was good when the Nb concentration in the matrix was reached at an equilibrium level and then the ${\beta}_{Nb}$ phase was formed.