• Title/Summary/Keyword: Wideband operation

Search Result 112, Processing Time 0.025 seconds

Simulink Model Implementation of MVDR Adaptive Beamformer for GPS Anti-Jamming

  • Han, Jeongwoo;Park, Hoon;Kim, Bokki;Han, Jin-Hee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.2
    • /
    • pp.51-57
    • /
    • 2020
  • For the purpose of development of anti-jamming GPS receiver we have developed an anti-jamming algorithm and its Simulink implementation model. The algorithm used here is a form of Space-Time Adaptive Processing (STAP) filter which is well known as an effective way to remove wideband jamming signals. We have chosen Minimum Variance Distortionless Response (MVDR) block-adaptive beamforming algorithm for our development since it can provide relatively fast convergence speed to reach optimal weights, stable and high suppression capability on various types of jamming signals. We will show modeling results for this MVDR type adaptive beamformer and some simulation results. We also show the integrity of the demodulated satellite signals and the accuracy of resulting navigation solutions after anti-jamming operation.

Negative Group Delay Circuit with Improved Signal Attenuation and Multiple Pole Characteristics

  • Chaudhary, Girdhari;Jeong, Junhyung;Kim, Phirun;Jeong, Yongchae
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.2
    • /
    • pp.76-81
    • /
    • 2015
  • This paper presents a design of a transmission line negative group delay (NGD) circuit with multiple pole characteristics. By inserting an additional transmission line into a conventional NGD circuit, the proposed circuit provides further design parameters to obtain wideband group delay (GD) and to help reduce signal attenuation. As a result, the number of gain compensating amplifiers can be reduced, which can contribute to stable operation when integrated into RF systems. The multiple pole characteristics can provide wider NGD bandwidth and can be obtained by connecting resonators with slightly different center frequencies separated by quarter-wavelength transmission lines. For experimental validation, an NGD circuit with two poles GD characteristic is designed, simulated, and measured.

Design of an Advanced CMOS Power Amplifier

  • Kim, Bumman;Park, Byungjoon;Jin, Sangsu
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.2
    • /
    • pp.63-75
    • /
    • 2015
  • The CMOS power amplifier (PA) is a promising solution for highly-integrated transmitters in a single chip. However, the implementation of PAs using the CMOS process is a major challenge because of the inferior characteristics of CMOS devices. This paper focuses on improvements to the efficiency and linearity of CMOS PAs for modern wireless communication systems incorporating high peak-to-average ratio signals. Additionally, an envelope tracking supply modulator is applied to the CMOS PA for further performance improvement. The first approach is enhancing the efficiency by waveform engineering. In the second approach, linearization using adaptive bias circuit and harmonic control for wideband signals is performed. In the third approach, a CMOS PA with dynamic auxiliary circuits is employed in an optimized envelope tracking (ET) operation. Using the proposed techniques, a fully integrated CMOS ET PA achieves competitive performance, suitable for employment in a real system.

A 7.6 mW 2 Gb/s Proximity Transmitter for Smartphone-Mirrored Display Applications

  • Liu, Dang;Liu, Xiaofeng;Rhee, Woogeun;Wang, Zhihua
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.415-424
    • /
    • 2016
  • This paper describes a high data rate proximity transmitter design for high resolution smartphone-mirrored display applications. A 2 Gb/s transmitter is designed with a low transmission power of -70 dBm/MHz and a wide bandwidth of nearly 3 GHz. A digital pre-correction method is employed in the transmitter to mitigate the inter-symbol interference problem. A carrier-based digital pulse shaping and a reconfigurable digital envelope generation methods are employed for robust operation by utilizing 20 phases from a 2 GHz phase-locked loop. A 6.5-9.5 GHz transmitter implemented in 65 nm CMOS achieves the maximum data rate of 2 Gb/s, consuming only 7.6 mW from a 1 V supply.

Mixed-Domain Adaptive Blind Correction of High-Resolution Time-Interleaved ADCs

  • Seo, Munkyo;Nam, Eunsoo;Rodwell, Mark
    • ETRI Journal
    • /
    • v.36 no.6
    • /
    • pp.894-904
    • /
    • 2014
  • Blind mismatch correction of time-interleaved analog-to-digital converters (TI-ADC) is a challenging task. We present a practical blind calibration technique for low-computation, low-complexity, and high-resolution applications. Its key features are: dramatically reduced computation; simple hardware; guaranteed parameter convergence with an arbitrary number of TI-ADC channels and most real-life input signals, with no bandwidth limitation; multiple Nyquist zone operation; and mixed-domain error correction. The proposed technique is experimentally verified by an M = 4 400 MSPS TI-ADC system. In a single-tone test, the proposed practical blind calibration technique suppressed mismatch spurs by 70 dB to 90 dB below the signal tone across the first two Nyquist zones (10 MHz to 390 MHz). A wideband signal test also confirms the proposed technique.

A Study on Optimization of Compact High-voltage Generator Based on Magnetic-core Tesla Transformer

  • Jeong, Young-Kyung;Youn, Dong-Gi;Lee, Moon-Qee
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1349-1354
    • /
    • 2014
  • This paper presents a compact and portable high-voltage generator based on magnetic-core Tesla transformer for driving an UWB high power electromagnetic source. In order to optimize the performance of the high-voltage generator, a novel open-loop cylindrical magnetic-core adopting the quad-division lamination structure is proposed and manufactured. The designed high-voltage generator using the proposed magnetic core has a battery-powered operation and compact size of $280mm{\times}150mm$ in length and diameter, respectively. The high-voltage generator can produce a voltage pulse waveform with peak amplitude of 450 kV, a rise time of 1.5 ns, and pulse duration of 2.5 ns at the 800 V input voltage.

Design of Channel Impedance Measurement Equipment for Indoor Power Line Communications (옥내 전력선 통신 채널 임피던스 측정 장치 설계)

  • Heo, Yun-Seok
    • The Journal of Information Technology
    • /
    • v.8 no.3
    • /
    • pp.25-33
    • /
    • 2005
  • This paper describe a method for measuring line impedance as a function of frequency for an energized powerline in normal operation. A small sinusoidal signal of a powerline communication utility frequency 30khz$\sim$1Mhz band is continuously injected into the line, and a implemented impedance analyzer calculates the indoor powerline channel impedance from the measured magnitude and phase of resulting voltage and current. The impedance measurement is executed over a range of frequencies to produce a wideband impedance versus frequency characteristic. Implemented impedance analyzer can analysis powerline communication environments measuring line impedance due to load caused in indoor. And measured analysis information through the database can use to evaluate performance of modem and to decide test environment standard.

  • PDF

Circuit Modelling and Eigenfrequency Analysis of a Poly-Si Based RF MEMS Switch Designed and Modelled for IEEE 802.11ad Protocol

  • Singh, Tejinder;Pashaie, Farzaneh
    • Journal of Computing Science and Engineering
    • /
    • v.8 no.3
    • /
    • pp.129-136
    • /
    • 2014
  • This paper presents the equivalent circuit modelling and eigenfrequency analysis of a wideband robust capacitive radio frequency (RF) microelectromechanical system (MEMS) switch that was designed using Poly-Si and Au layer membrane for highly reliable switching operation. The circuit characterization includes the extraction of resistance, inductance, on and off state capacitance, and Q-factor. The first six eigenfrequencies are analyzed using a finite element modeler, and the equivalent modes are demonstrated. The switch is optimized for millimeter wave frequencies, which indicate excellent RF performance with isolation of more than 55 dB and a low insertion loss of 0.1 dB in the V-band. The designed switch actuates at 13.2 V. The R, L, C and Q-factor are simulated using Y-matrix data over a frequency sweep of 20-100 GHz. The proposed switch has various applications in satellite communication networks and can also be used for devices that will incorporate the upcoming IEEE Wi-Fi 802.11ad protocol.

Wide band prototype feedhorn design for ASTE focal plane array

  • Lee, Bangwon;Gonzales, Alvaro;Lee, Jung-won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.66.2-66.2
    • /
    • 2016
  • KASI and NAOJ are making collaborating efforts to implement faster mapping capability into the new 275-500 GHz Atacama Submillimeter Telescope Experiment focal plane array (FPA). Feed horn antenna is one of critical parts of the FPA. Required fractional bandwidth is almost 60 % while that of traditional conical horn is less than 50 %. Therefore, to achieve this wideband performance, we adopted a horn of which the corrugation depths have a longitudinal profile. A profiled horn has features not only of wide bandwidth but also of shorter length compared to a linear-tapered corrugated horn, and lower cost fabrication with less error can be feasible. In our design process the flare region is represented by a cubic splined curve with several parameters. Parameters of the flare region and each dimension of the throat region are optimized by a differential evolution algorithm to keep >20 dB return loss and >30 dB maximum cross-polarization level over the operation bandwidth. To evaluate RF performance of the horn generated by the optimizer, we used a commercial mode matching software, WASP-NET. Also, Gaussian beam (GB) masks to far fields were applied to give better GB behavior over frequencies. The optimized design shows >23 dB return loss and >33 dB maximum cross-polarization level over the whole band. Gaussicity of the horn is over 96.6 %. The length of the horn is 12.5 mm which is just 57 % of the ALMA band 8 feed horn (21.96 mm).

  • PDF

Three Axis Isotropic Field Strength Measuring Antenna (3축 등방성 전계강도 측정 안테나)

  • Choi, Suk-Hwan;Kim, Dong-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.9
    • /
    • pp.879-885
    • /
    • 2014
  • In this paper, we designed and fabricated wideband 3-axis isotropic antenna for the Electro-Magnetic Fields(EMFs) measurement. Each part of proposed 3-axis antenna has isotropic characteristics and arbitrary axis of proposed 3-axis antenna could be selectable using RF switch. Also, a resistor was inserted in each axis of proposed 3-axis antenna for improving antenna gain and noise suppression characteristics, and port impedance of each dipole antenna were matched by balun. For the performance verification of antenna, GTEM Cell which generates standard electromagnetic field was used for the derivation of antenna factor and receiver sensitivity. As a result, fabricated 3-axis isotropic antenna has receiver sensitivity of 0.12~4.2 mV/m and typical VSWR of 3.3:1 within a wide operation frequency range from 0.03 MHz to 3 GHz.