• Title/Summary/Keyword: Wideband operation

Search Result 112, Processing Time 0.023 seconds

Split Slant-End Stubs for the Design of Broadband Efficient Power Amplifiers

  • Park, Youngcheol;Kang, Taeggu
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.1
    • /
    • pp.52-56
    • /
    • 2016
  • This paper suggests a class-F power amplifier with split open-end stubs to provide a broadband high-efficiency operation. These stubs are designed to have wide bandwidth by splitting wide open-end stubs into narrower stubs connected in shunt in an output matching network for class-F operation. In contrast to conventional wideband class-F designs, which theoretically need a large number of matching lines, this method requires fewer transmission lines, resulting in a compact circuit implementation. In addition, the open-end stubs are designed with slant ends to achieve additional wide bandwidth. To verify the suggested design, a 10-W class-F power amplifier operating at 1.7 GHz was implemented using a commercial GaN transistor. The measurement results showed a peak drain efficiency of 82.1% and 750 MHz of bandwidth for an efficiency higher than 63%. Additionally, the maximum output power was 14.45 W at 1.7 GHz.

Highly Linear Wideband LNA Design Using Inductive Shunt Feedback (Inductive Shunt 피드백을 이용한 고선형성 광대역 저잡음 증폭기)

  • Jeonng, Nam Hwi;Cho, Choon Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.11
    • /
    • pp.1055-1063
    • /
    • 2013
  • Low noise amplifiers(LNAs) are an integral component of RF receivers and are frequently required to operate at wide frequency bands for various wireless systems. For wideband operation, important performance metrics such as voltage gain, return loss, noise figures and linearity have been carefully investigated and characterized for the proposed LNA. An inductive shunt feedback configuration is successfully employed in the input stage of the proposed LNA which incorporates cascaded networks with a peaking inductor in the buffer stage. Design equations for obtaining low and high input matching frequencies are easily derived, leading to a relatively simple method for circuit implementation. Careful theoretical analysis explains that poles and zeros are characterized and utilized for realizing the wideband response. Linearity is significantly improved because the inductor between gate and drain decreases the third-order harmonics at the output. Fabricated in $0.18{\mu}m$ CMOS process, the chip area of this LNA is $0.202mm^2$, including pads. Measurement results illustrate that input return loss shows less than -7 dB, voltage gain greater than 8 dB, and a little high noise figure around 7~8 dB over 1.5~13 GHz. In addition, good linearity(IIP3) of 2.5 dBm is achieved at 8 GHz and 14 mA of current is consumed from a 1.8 V supply.

Designing a Wideband Antenna Using Diplexer Matching Network for Tactical Vehicles (다이플렉서 정합구조를 이용한 전술차량형 광대역 안테나 설계)

  • Cho, Ji-Haeng;Dong, Moon-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.9
    • /
    • pp.661-667
    • /
    • 2018
  • Tactical communication radio systems that employ software defined radios(SDRs) have been developed for achieving high-speed data transmissions and voice communications. Such systems possess multiband and multichannel features, and can potentially replace several existing radio systems. This paper proposes a design for wideband antennas by incorporating a diplexer matching network for tactical vehicles. The proposed antenna design includes two radiators(upper and lower) and a diplexer matching network connected to the end of the feed line such that the LC matching networks are interleaved in the lower radiator and spring mount. By employing the diplexer matching network, the designed antenna can perform wideband impedance matching for the fifty ohm feed line. The designed LC networks aid in varying the effective electrical length of the antenna according to the operation frequency. The primary objective behind adjusting the electrical length is to vary the current distribution above and below the LC networks. The proposed antenna was fabricated and tested in an open site. The obtained evaluation results show that the designed antenna can achieve a relative bandwidth of 190% with a VSWR value of 3.5:1, and can attain good antenna gains over VHF and UHF bands.

Satellite Communication Microstrip 8X2 Away Antenna for TX / RX Dual Operation at Ku-band (Ku 대역 위성통신 송수신 겸용 마이크로스트립 8X2 배열 안테나)

  • 윤재승;전순익;최재익;채종석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.6
    • /
    • pp.574-581
    • /
    • 2002
  • Microstrip $8{ imes}2$ sub-array antennas for a extension to active phased array antennas are designed, fabricated and measured for TX/RX dual operation in satellite communication and a reception of satellite broadcasting. For the frequency range from 11.7 to 12.75 GHz for RX and from 14 to 14.5 GHz for TX, two orthogonal linear polarizations of ${pm}45^{\circ}$ are used to transmit and receive simultaneously with one radiator. They adopt dual resonance between two patches for wideband characteristics in RX band and show isolation characteristics over 20 dB. An electrical beam tilt of $30^{\circ}$ is achieved and a tapered power distribution, narrow element spacing are used for the purpose of low side-lobe characteristics.

New Decision Rules for UWB Synchronization (UWB 동기화를 위한 새로운 결정 법칙들)

  • Chong, Da-Hae;Lee, Young-Yoon;Ahn, Sang-Ho;Lee, Eui-Hyoung;Yoo, Seung-Hwan;Yoon, Seok-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.2C
    • /
    • pp.192-199
    • /
    • 2008
  • In ultra-wideband (UWB) systems, conventionally, the synchronization is to align time phases of a locally generated template and any of multipath components to within an allowable range. However, the synchronization with a low-power multipath component could incur significant performance degradation in receiver operation (e.g., detection) after the synchronization. On the other hand, the synchronization with a high-power multipath component can improve the performance in receiver operation after the synchronization. Generally, the first one among multipath components has the largest power. Thus, the synchronization with the first path component can make better performance than that with low-power component in receiver operation after the synchronization, Based on which, we first propose an optimal decision rule based on a maximum likelihood (ML) approach, and then, develope a simpler suboptimal decision rule for selecting the first path component. Simulation results show that the system has good demodulation performance, which uses new synchronization definition and the proposed decision rules have better performance than that of the conventional decision rule in UWB multipath channels. Between macroblocks in the previous and the current frame. On video samples with high motion and scene change cases, experimental results show that (1) the proposed algorithm adapts the encoded bitstream to limited channel capacity, while existing algorithms abruptly excess the limit bit rate; (2) the proposed algorithm improves picture quality with $0.4{\sim}0.9$dB in average.

Design of Compact Log-Periodic Half-Bow-tie Dipole Array Antenna for UWB Band (UWB 대역 소형 대수-주기 반-보우타이 다이폴 배열 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.81-82
    • /
    • 2016
  • In this paper, a design method for a compact log-periodic half-bow-tie dipole array antenna for an operation in UWB band is studied. The proposed antenna is miniaturized by using half-bow-tie shaped dipole elements instead of strip-type dipole elements, which are commonly used in general log-periodic dipole array antenna, and by reducing the element spacing. The effects of the flare angle of the half-bow-tie elements and the element spacing on input reflection coefficient and realized gain characteristics of the proposed log-periodic antenna are analyzed. The optimized antenna is designed on FR4 substrate, and it operates in the frequency band of 3.05-13.96 GHz for a VSWR < 2, which assures the operation in the UWB band.

  • PDF

Band-Rejected UWB Antenna Using Unit Cells of FSS (FSS 단위 셀을 이용한 대역저지 UWB 안테나)

  • Lee, Chang Yong;Jung, Chang Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3431-3436
    • /
    • 2013
  • Band-notched ultra-wideband (UWB) antennas using frequency selective surfaces (FSSs) are presented. The proposed antennas utilized the band rejection characteristic of typical FSS unit cells. We loaded the FSS unit cells on the same plane of planar UWB antenna. These antennas are designed to reject the interference from the wireless local area network band, 5.15-5.825 GHz in the UWB band, 3.1-10.6 GHz. The measured peak gains of the proposed antennas are more than 2 dBi at both operation edge and center frequencies, and sufficient to apply for commercial purpose. The antennas are small size and planar shape for the purpose of the small mobile application, and enhanced design freedom by using various existing FSS unit cells.

A Design of CPW Band-Pass Filter with Rejection Band for Ultra-Wideband System (저지 대역을 갖는 UWB용 CPW 대역 통과 여파기의 설계)

  • No, Jin-Won;Hwang, Hee-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.7
    • /
    • pp.704-709
    • /
    • 2007
  • In this paper, a CPW band-pass filter with a rejection band is proposed for UWB(Ultra-Wideband) communication systems. The proposed filter has a band-pass characteristic of wide-band by inserting only a slot in $50{\Omega}$ transmission line. To obtain the band-rejection function at WLAN frequency band($5.15{\sim}5.725GHz$), the designed filter is combined with folded slot resonators on the ground plane of the CPW structure. The fabricated CPW band-pass filter shows a compact size of $15.35{\times}13.60mm$, a wide passband of 2.8 GHz to 9.8 GHz and the narrow stop-band of 5.15 GHz to 5.71 GHz for 3-dB bandwidth. Also, the measured group delay is less than 400 psec throughout the operation frequency band except the rejection band.

A Research on a Cross Post-Distortion Balanced Linear Power Amplifier for Base-Station (기지국용 Cross Post-Distortion 평형 선형 전력 증폭기에 관한 연구)

  • Choi, Heung-Jae;Jeong, Hee-Young;Jeong, Yong-Chae;Kim, Chul-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.11
    • /
    • pp.1262-1270
    • /
    • 2007
  • In this paper, we propose a new distortion cancellation mechanism for a balanced power amplifier structure using the carrier cancellation loop of a feedforward and post-distortion technique. The proposed cross post-distortion balanced linear amplifier can reduce nonlinear components as much as the conventional feedforward amplifier through the output dynamic range and broad bandwidth. Also the proposed system provides higher efficiency than the feedforward. The capacities of power amplifier and error power amplifier in the proposed system are analyzed and compared with those of feedforward amplifier. Also the operation mechanisms of the three kind loops are explained. The proposed cross post-distortion balanced linear power amplifier is implemented at the IMT-2000($f_0=2.14\;GHz$) band. With the commercial high power amplifiers of total power of 240 W peak envelope power fer base-station application, the adjacent channel leakage ratio measurement with wideband code division multiple access 4FA signal shows 18.6 dB improvement at an average output power of 40 dBm. The efficiency of fabricated amplifier Improves about 2 % than the conventional feedforward amplifier.

Wideband Impedance Transformer Using a Coaxial Cable (동축선을 이용한 광대역 임피던스 트랜스포머)

  • Park, Ung-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.4
    • /
    • pp.789-794
    • /
    • 2011
  • A coaxial-cable impedance transformer used in wideband frequency range is generally restricted to the fixed impedance transformation ratio as n2:1 or 1:n2(n: the number of coaxial cables). In this paper, we propose a new coaxial-cable impedance transformer to have an arbitrary impedance transformation ratio. We have fabricated three impedance transformers($50-{\Omega}$ to $25-{\Omega}$, $50-{\Omega}$ to $20-{\Omega}$ and $50-{\Omega}$ to $9-{\Omega}$) to confirm the operation characteristic of the suggested impedance transformer. The reflection characteristics (S11) of the fabricated $50-{\Omega}$ to $25-{\Omega}$ and $50-{\Omega}$ to $20-{\Omega}$ impedance transformer were less than -15dB over about 3-octaves frequency range and the reflection characteristic (S11) of the fabricated $50-{\Omega}$ to $9-{\Omega}$ impedance transformer was less than -15dB over about 1-octave frequency range, respectively.