• 제목/요약/키워드: Wide-bandgap

Search Result 142, Processing Time 0.038 seconds

A Study on the Electrical Characteristics with Design Parameters in GaN Power Static Induction Transistor (GaN Power SIT의 설계변수에 따른 전기적 특성변화에 관한 연구)

  • Oh, Ju-Hyun;Yang, Sung-Min;Jung, Eun-Sik;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.9
    • /
    • pp.671-675
    • /
    • 2010
  • Gallium nitride (GaN), wide bandgap semiconductor, has attracted much attention because they are projected to have much better performance than silicon. In this paper, effects of design parameters change of GaN power static induction transistor (SIT) on the electrical characteristics (breakdown voltage, on resistance) were analyzed by computer simulation. According to the analyzed results, the optimization was performed to get power GaN SIT that has 600 V class breakdown voltage. As a result, we could get optimized 600 V class power GaN SIT that has higher breakdown voltage and lower On resistance with a thin (a several micro-meters) thickness of the channel layer.

Advances in Absorbers and Reflectors of Amorphous Silicon Oxide Thin Film Solar Cells for Tandem Devices (적층형 태양전지를 위한 비정질실리콘계 산화막 박막태양전지의 광흡수층 및 반사체 성능 향상 기술)

  • Kang, Dong-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.2
    • /
    • pp.115-118
    • /
    • 2017
  • Highly photosensitive and wide bandgap amorphous silicon oxide (a-$SiO_x$:H) films were developed at low temperature ranges ($100{\sim}150^{\circ}C$) with employing plasma-enhanced chemical vapor deposition by optimizing $H_2/SiH_4$ gas ratio and $CO_2$ flow. Photosensitivity more than $10^5$ and wide bandgap (1.81~1.85 eV) properties were used for making the a-$SiO_x$:H thin film solar cells, which exhibited a high open circuit voltage of 0.987 V at the substrate temperature of $100^{\circ}C$. In addition, a power conversion efficiency of 6.87% for the cell could be improved up to 7.77% by employing a new n-type nc-$SiO_x$:H/ZnO:Al/Ag triple back-reflector that offers better short circuit currents in the thin film photovoltaic devices.

Field Assisted Method of Producing Wide-bandgap Transparent Conductive Electrodes for Deep Ultra-violet Light Emitting Diodes Prepared by Magnetron Sputtering

  • Kim, Seok-Won;Kim, Su-Jin;Kim, Hui-Dong;Kim, Gyeong-Heon;Park, Ju-Hyeon;Lee, Byeong-Ryong;U, Gi-Yeong;Kim, Tae-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.331-331
    • /
    • 2014
  • 3족 질화물에 기반한 발광다이오드는 비소화물이나 인화물에 비해 여러 가지 장점을 가져 각광받아왔다. 특히, (Al)GaN 에 기반한 자외선 영역 발광 다이오드는 자외선 경화, 소독 등의 여러 가지 응용 가능성을 가진다 [1]. 하지만, 심자외선 영역으로 갈수록 높은 접촉 저항과 투명전극에서의 광흡수에 의해 전류주입 효율과 광추출 효율이 감소하여 결국 외부양자 효율이 더욱 열화되는 특성을 보인다. 이는 넓은 밴드갭을 가지는 물질을 이용하여 p-(Al)GaN 층에서 오믹접촉을 이루어야만 해결이 가능하지만 아직까지 이러한 결과가 보고된 바 없다. 본 연구에서는, 우리는 넓은 밴드갭을 가지는 silicon dioxide (SiO2) 에 전기장을 인가하여 p-GaN, and p-AlGaN 층에 전도성 필라멘트를 형성하여 전기전도도를 부여하는 연구를 진행하였다. p-GaN 과 p-AlGaN 위에서 5 nm 두께의 SiO2는 schottky 한 특성과 280 nm의 파장대역에서 약 97%의 투과율을 보였다. 비록 schottky 장벽이 형성되었지만, 전기전도도가 크게 향상되었으며 심자외선 영역에서 매우 낮은 흡수율을 보였다. 이는 기존의 증착후 열처리를 거쳐 제조된 전극에 비하여 우수한 특성을 지니며 향후 심자외선 영역 발광다이오드의 p-(Al)GaN 층 위에 오믹접촉을 이룰수 있는 가능성을 제시한다.

  • PDF

Strain evolution in Tin Oxide thin films deposited by powder sputtering method

  • Cha, Su-Yeon;Gang, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.283.1-283.1
    • /
    • 2016
  • Tin Oxide(SnO2) has been widely investigated as a transparent conducting oxide (TCO) and can be used in optoelectronic devices such as solar cell and flat-panel displays. It would be applicable to fabricating the wide bandgap semiconductor because of its bandgap of 3.6 eV. In addition, SnO2 is commonly used as gas sensors. To fabricate high quality epitaxial SnO2 thin films, a powder sputtering method was used, in contrast to typical sputtering technique with sintered target. Single crystalline sapphire(0001) substrates were used. The samples were prepared with varying the growth parameters such as gas environment and film thickness. Then, the samples were characterized by using X-ray diffraction, scanning electron microscopy, and atomic force microscopy measurements. We found that the strain evolution of the samples was highly affected by gas environment and growth rate, resulted in the delamination under O2 environment.

  • PDF

Epitaxial growth of Tin Oxide thin films deposited by powder sputtering method

  • Baek, Eun-Ha;Kim, So-Jin;Gang, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.185.2-185.2
    • /
    • 2015
  • Tin Oxide (SnO2) has been widely investigated as a transparent conducting oxide (TCO) and can be used in optoelectronic devices such as solar cell and flat-panel displays. In addition, it would be applicable to fabricating the wide bandgap semiconductor because of its bandgap of 3.6 eV. There have been concentrated on the improvement of optical properties, such as conductivity and transparency, by doping Indium Oxide and Gallium Oxide. Recently, with development of fabrication techniques, high-qulaity SnO2 epitaxial thin films have been studied and received much attention to produce the electronic devices such as sensor and light-emitting diode. In this study, powder sputtering method was employed to deposit epitaxial thin films on sapphire (0001) substrates. A commercial SnO2 powder was sputtered. The samples were prepared with varying the growth parameters such as gas environment and film thickness. Then, the samples were characterized by using XRD, SEM, AFM, and Raman spectroscopy measurements. The details of physical properties of epitaxial SnO2 thin films will be presented.

  • PDF

Photonic Bandgap Bragg Fibers: A New Platform for Realizing application-specific Specialty Optical Fibers and Components

  • Pal, Bishnu P.
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2006.02a
    • /
    • pp.87-88
    • /
    • 2006
  • Bragg fibers, consisting of a low index core (including air) surrounded by a series of periodic layers of alternate high and low refractive index materials, each being higher than that of the core, form a 1D photonic bandgap (PBG). In view of the multitude of individual physical parameters that characterize a Bragg fiber, they offer a wide choice of parametric avenues to tailor their propagation characteristics. Owing to their unique PBG guidance mechanism, Bragg fibers indeed exhibit unusual dispersion characteristics that are otherwise nearly impossible to achieve in conventional silica fibers. Solid core Bragg fibers, amenable to fabrication by the highly mature MCVD technology, could be designed to realize broadband supercontinuum light. This talk would review our recent works on modeling of propagation characteristics, dispersion tailoring in them for applications as metro as well as dispersion compensating fibers and also as supercontinuum light generators.

  • PDF

Design of Power Plane for Suppressing Spurious Resonances in High Speed PCBs

  • Oh Seung-Seok;Kim Jung-Min;Yook Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.1
    • /
    • pp.62-70
    • /
    • 2006
  • This paper presents a new power plane design method incorporating a single geometry derived from a unit cell of photonic bandgap(PBG) structure. This method yields constantly wide suppression of parallel plate resonances from 0.9 GHz to 4.2 GHz and is very efficient to eliminate PCB resonances in a specified frequency region to provide effective suppression of simultaneous switching noise(SSN). It is shown that with only two cells the propagation of unwanted high frequency signals is effectively suppressed, while it could provide continuous return signal path. The measured results agree very well with theoretically predicted ones, and confirm that proposed method is effective for reducing EMI, with measured near-field distribution. The proposed topology is suitable for design of high speed digital system.

Design of a Compact and Wide Bandstop Filter using a Multilayered Photonic Bandgap Structure (다층 포토닉 밴드갭 구조를 이용한 소형의 광대역 저지 여파기 설계)

  • Seo, Jae-Ok;Park, Seong-Dae;Kim, Jin-Yang;Lee, Hai-Young
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.11
    • /
    • pp.34-39
    • /
    • 2002
  • In this paper, we proposed novel photonic bandgap(PBG) structure using EGP(Elevated Ground Plane) and via in ceramic substrate of microstrip line. From analysis result, the proposed PBG structure is reduced 52.5% at size and increased 45 % at bandwidth compared to typical planar PBG structure. It is also reduced 32 % at size and improved more than 8 dB at power loss compared to typical multilayer DGS(Defected Ground Structure). The proposed PBG structure also can be used bandstop and lowpass filter and it will be useful for small microwave integrated circuit and module development.

A Novel PBG structure LPF for Performance improvement of Microstrip Circuits. (마이크로스트립 회로 성능 개선을 위한 새로운 PBG 구조의 LPF)

  • 김태선;서철헌
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.3A
    • /
    • pp.430-434
    • /
    • 2000
  • In this paper, a novel photonic bandgap(PBG) structure is proposed for increasing stropband of lowpass filter without the size increment of circuit for application in microstrip circuits. The proposed structure is connected in parallel two periodic structures which have different center frequency of the stopband. The wide stopband is achieved by two periodic structures of two different stopbands. We also show the performance improvement of microstrip patch antenna by etching of the proposed structure in ground plane.

  • PDF

Carrier lifetime study in GaN-based LEDs: the influence of tunneling and piezoelectric potential (GaN LED에서 tunneling과 piezoelectric potential에 의한 carrier lifetime 연구)

  • 조영달;오은순;김대식
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.48-49
    • /
    • 2001
  • GaN는 wurzite structure를 갖는 wide bandgap III-V족 반도체로서, 청색 반도체 laser diode (LD), light emitting diode (LED)등으로 응용되는 물질이다. InGaN quantum well은 GaN계의 청색 LD, LED 구조에서 활성층으로 사용되기 때문에 이에 대한 광학적 연구가 활발하다. InGaN는 GaN위에 성장하면 strain에 의해 piezoelectric 효과가 크게 나타나는 것으로 알려져 있다. 이러한 piezoelectric potential에 의해 외부에서 voltage가 가해지지 않은 상황에서도 InGaN quantum well내의 electron, hole의 wave function이 비대칭 potential의 영향을 받게된다. (중략)

  • PDF