• Title/Summary/Keyword: Wide-band transmission

Search Result 182, Processing Time 0.021 seconds

Nearly single crystal, few-layered hexagonal boron nitride films with centimeter size using reusable Ni(111)

  • Oh, Hongseok;Jo, Janghyun;Yoon, Hosang;Tchoe, Youngbin;Kim, Sung-Soo;Kim, Miyoung;Sohn, Byeong-Hyeok;Yi, Gyu-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.286-286
    • /
    • 2016
  • Hexagonal boron nitride (hBN) is a dielectric insulator with a two-dimensional (2D) layered structure. It is an appealing substrate dielectric for many applications due to its favorable properties, such as a wide band gap energy, chemical inertness and high thermal conductivity[1]. Furthermore, its remarkable mechanical strength renders few-layered hBN a flexible and transparent substrate, ideal for next-generation electronics and optoelectronics in applications. However, the difficulty of preparing high quality large-area hBN films has hindered their widespread use. Generally, large-area hBN layers prepared by chemical vapor deposition (CVD) usually exhibit polycrystalline structures with a typical average grain size of several microns. It has been reported that grain boundaries or dislocations in hBN can degrade its electronic or mechanical properties. Accordingly, large-area single crystalline hBN layers are desired to fully realize the potential advantages of hBN in device applications. In this presentation, we report the growth and transfer of centimeter-sized, nearly single crystal hexagonal boron nitride (hBN) few-layer films using Ni(111) single crystal substrates. The hBN films were grown on Ni(111) substrates using atmospheric pressure chemical vapor deposition (APCVD). The grown films were transferred to arbitrary substrates via an electrochemical delamination technique, and remaining Ni(111) substrates were repeatedly re-used. The crystallinity of the grown films from the atomic to centimeter scale was confirmed based on transmission electron microscopy (TEM) and reflection high energy electron diffraction (RHEED). Careful study of the growth parameters was also carried out. Moreover, various characterizations confirmed that the grown films exhibited typical characteristics of hexagonal boron nitride layers over the entire area. Our results suggest that hBN can be widely used in various applications where large-area, high quality, and single crystalline 2D insulating layers are required.

  • PDF

The current status and control measures of BSE in the worldwide (국내, 외 광우병의 발생 현황과 대응 방안)

  • Yoo, Han-Sang
    • 한국환경농학회:학술대회논문집
    • /
    • 2009.07a
    • /
    • pp.273-282
    • /
    • 2009
  • The transmissible spongiform encephalopathies (TSEs) disease group are fatal neurodegenerative disorders affecting a wide range of hosts. The group includes kuru and Creutzfeldt-Jakob disease (CJD) in humans, scrapie in sheep and goats and Bovine spongiform encephalopathy (BSE) in cattle. The exact nature of the infectious agent involved in the transmission of these diseases remains controversial. However, a central event in their pathogenesis is the accumulation in infected tissues of an abnormal form of a host-encoded protein, the prion protein (PrP). Whereas the normal cellular protein is fully sensitive to protease ($PrP^{sen}$), the disease-associated prion protein ($PrP^d$) is only partly degraded ($PrP^{res}$), its amino-terminal end being removed. BSE was first reported in the mid-80s in the UK. Ten years later, a new form of human prion disease, variant CJD (vCJD) developed in the wake of the BSE epidemic, and there is now strong scientific evidence that vCJD was initiated by the exposure of humans to BSE-infected tissues, thus indicating a zoonotic disease. However, the ban on the feeding of animal-derived proteins to ruminants, and the apparent lack of vertical transmission of BSE, have led to a decline in the incidence of the disease within cattle herd and therefore, an assumed decreased risk for human contacting vCJD. The origin of the original case(s) of BSE still remains an enigma even though three hypotheses have been raised. Hypotheses are i) sheep- or goat-derived scrapie-infected tissues included in meat and bone meal fed to cattle, ii) a previously undetected sporadic or genetic bovine TSE contaminating cattle feed or iii) originating from a human TSE through animal feed contaminated with human remains. A host cellular membrane protein ($PrP^C$), which is abundant in central nervous system tissue, appear to be conformationally altered in the diseased host into a prion protein ($PrP^{Sc}$). This $PrP^{Sc}$ is detergent insoluble and partially protease-resistant ($PrP^{res}$). The term $PrP^{res}$ is normally used to describe the protein detected after protease treatment, in techniques such as Western immunoblotting, and enzyme-linked immunosorbant assay using fresh/frozen tissue. Immunohistochemistry may performed with formalin-fixed tissues. Also, clinical signs of the BSE are one of the major diagnostic indicators. Recently, atypical forms (known as H- and L-type) of BSE have appeared in several European countries, Japan, Canada and the United States. An unusual case was also reported in a miniature zebu. The atypical BSE fall into two groups based on the relative molecular mass (Mm) of the unglycosylated $PrP^{res}$ band relative to that of classical BSE, one of the higher Mm (H-type) and the other lower (L-type). Both types have been detected worldwide as rare cases in older animals, at a low prevalence consistent with the possibility of sporadic forms of prion diseases in cattle. This raises the unwelcome possibility that vCJD could increase in the human population. Now, active surveillance program against BSE is going on in Korea. In regional veterinary service lab, ELISA is applied to screen the BSE in slaughter and confirmatory tests by Western immunoblotting and immunohistochemisty are carried out if there are positive or suspect in the screening test. Also, the ruminant feed ban is rigorously enforced. Removal of specified risk materials such as brain and spinal cord from cattle is mandatory process at slaughter to prevent the infected material from entering the human food chain.

  • PDF