• Title/Summary/Keyword: Wide-angle

Search Result 1,037, Processing Time 0.026 seconds

Structure and Properties of Syndiotactic Polystyrene Fibers Prepared in High-speed Melt Spinning Process

  • Hada Yoshiaki;Shikuma Haruo;Ito Hiroshi;Kikutani Takeshi
    • Fibers and Polymers
    • /
    • v.6 no.1
    • /
    • pp.19-27
    • /
    • 2005
  • High-speed melt spinning of syndiotactic polystyrene was carried out using high and low molecular weight poly­mers, HM s-PS and LM s-PS, at the throughput rates of 3 and 6 g/min. The effect of take-up velocity on the structure and properties of as-spun fibers was investigated. Wide angle X-ray diffraction (WAXD) patterns of the as-spun fibers revealed that the orientation-induced crystallization started to occur at the take-up velocities of 2-3 km/min. The crystal modification was a-form. Birefringence of as-spun fibers showed negative value, and the absolute value of birefringence increased with an increase in the take-up velocity. The cold crystallization temperature analyzed through the differential scanning calorimetry (OSC) decreased with an increase in the take-up velocity in the low speed region, whereas as the melting temperature increased after the on-set of orientation-induced crystallization. It was found that the fiber structure development proceeded from lower take-up velocities when the spinning conditions of higher molecular weight and lower throughput rate were adopted. The highest tensile modulus of 6.5 GPa was obtained for the fibers prepared at the spinning conditions of LM s-PS, 6 g/min and 5 km/min, whereas the highest tensile strength of 160 MPa was obtained for the HM s-PS fibers at the take-up velocity of 2 km/min. Elongation at break of as-spun fibers showed an abrupt increase, which was regarded as the brittle-duc­tile transition, in the low speed region, and subsequently decreased with an increase in the take-up velocity. There was a uni­versal relation between the thermal and mechanical properties of as-spun fibers and the birefringence of as-spun fibers when the fibers were still amorphous. The orientation-induced crystallization was found to start when the birefringence reached -0.02. After the starting of the orientation-induced crystallization, thermal and mechanical properties of as-spun fibers with similar level of birefringence varied significantly depending on the processing conditions.

In-Situ Experiment Method on Evaluation of Debris Flow (토석류 발생량 평가를 위한 현장시험 방법)

  • Song, Byungwoong;Yoon, Hyunseok;Kim, Seongmoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.7
    • /
    • pp.31-38
    • /
    • 2013
  • After debris flow caused damage during recent years, many scholars and engineers have thrown their effort into analyzing risk from debris flow in Korea. But it is hard to predict damage by debris flow taken place in wide area. Recently, SINMAP program is widely well used to estimate the amount of debris flow and its' range. In order to make frequent use of it, the most important thing is selection of accurate input parameters. In-situ experiments, which are avaliable in the mountain, is to be suggested to get dependable input parameters for SINMAP. Those are permeability, cohesion, density, friction angle and thickness in SINMAP. To get those, test pit, block sampling, in-situ density test, auger boring, permeability test on ground surface, borehole shear test and dynamic cone test and so forth were selected. In addition, the reliability of the results will be increased through comparing with those by laboratory tests. Hence, the experiments are hard to enter the sites without temporary road and, if possible, licensing and many times are needed, too. Small size experiments are indeed necessary to get accurate parameters.

Photo Spacer Induced Bistable Mode Plastic PSFLCDs for High Mechanical Stability

  • Kim, Yu-Jin;Park, Seo-Kyu;Kwon, Soon-Bum;Lee, Ji-Hoon;Son, Ock-Soo;Lim, Tong-Kun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.489-492
    • /
    • 2005
  • We report new polymer stabilized ferroelectric liquid crystal (PSFLC) cells with mechanical stability which is achievable by introducing photospacers in the cells. It was found that the mechanical st ability of the PSFLC cell was effected by introduction of photo spacers. We analyzed the dependence of mechanical stability and memory property on the density of photospacers in the PSFLC cell. The stability and memory properties of PSFLC Cells depending on photospacer density are discussed. 1. Introduction Recently, flexible displays have attracted much attention because they have remarkable advantages: thinner, lighter, non-breakable and conformable features. Flexible displays have various potential applications such as e-book and e-paper displays utilizing the distinct features. E-book and E-paper displays demand very low power consumption, so that bistable memory liquid crystal modes are required in case of flexible plastic LCDs for those application. Three kinds of memory LC modes have been developed; bistable nematic, bistable cholesteric and bistable FLC. Among them SSFLC as one of bistable FLC has big advantages such as low driving voltage, wide view angle and fast response time, SSFLC cells are, however, very weak against mechanical shock. Polymer stabilized FLC (PSFLC) has been developed to overcome the poor mechanical stability of SSFLC. PSFLC was known to have network structure that FLCs are oriented with smectic layer ordering in polymer network. The polymer network stabilizes the FLC orientation, which leads to improvement of mechanical stability of PSFLCD. A lot of studies have been done for the application of PSFLC to flexible $LCDs.^{[1{\sim}12]}$ However, it should be noted that PSFLC does not have sufficient mechanical stability for the particular applications such as smart card LCD, where LCD is highly bendable.Bead spacer was mainly used to maintain cell gap of conventional PSFLCDs. But the spacer density of it is not locally uniform in the cell, so that it is generally difficult that the PSFLCDs with bead spacers show sufficient mechanical stability. In order to more improve the mechanical stability of PSFLCDs, we introduced photospacers into PSFLCDs. In this paper, we describe the improvement of mechanical stability by introducing photospacers into PSFLCDs.

  • PDF

Effect of Sputtering Powers on Mg and Ga Co-Doped ZnO Thin Films with Transparent Conducting Characteristics (RF 마그네트론 스퍼터를 이용하여 제작한 MGZO 박막의 구조적 및 전기적, 광학적 특성에 미치는 스퍼터링 전력의 영향)

  • Kim, In Young;Shin, Seung Wook;Kim, Min Sung;Yun, Jae Ho;Heo, Gi Seok;Jeong, Chae Hwan;Moon, Jong-Ha;Lee, Jeong Yong;Kim, Jin Hyoek
    • Korean Journal of Materials Research
    • /
    • v.23 no.3
    • /
    • pp.155-160
    • /
    • 2013
  • ZnO thin films co-doped with Mg and Ga (MxGyZzO, x + y + z = 1, x = 0.05, y = 0.02 and z = 0.93) were prepared on glass substrates by RF magnetron sputtering with different sputtering powers ranging from 100W to 200W at a substrate temperature of $350^{\circ}C$. The effects of the sputtering power on the structural, morphological, electrical, and optical properties of MGZO thin films were investigated. The X-ray diffraction patterns showed that all the MGZO thin films were grown as a hexagonal wurtzite phase with the preferred orientation on the c-axis without secondary phases such as MgO, $Ga_2O_3$, or $ZnGa_2O_4$. The intensity of the diffraction peak from the (0002) plane of the MGZO thin films was enhanced as the sputtering power increased. The (0002) peak positions of the MGZO thin films was shifted toward, a high diffraction angle as the sputtering power increased. Cross-sectional field emission scanning electron microscopy images of the MGZO thin films showed that all of these films had a columnar structure and their thickness increased with an increase in the sputtering power. MGZO thin film deposited at the sputtering power of 200W showed the best electrical characteristics in terms of the carrier concentration ($4.71{\times}10^{20}cm^{-3}$), charge carrier mobility ($10.2cm^2V^{-1}s^{-1}$) and a minimum resistivity ($1.3{\times}10^{-3}{\Omega}cm$). A UV-visible spectroscopy assessment showed that the MGZO thin films had high transmittance of more than 80 % in the visible region and that the absorption edges of MGZO thin films were very sharp and shifted toward the higher wavelength side, from 270 nm to 340 nm, with an increase in the sputtering power. The band-gap energy of MGZO thin films was widened from 3.74 eV to 3.92 eV with the change in the sputtering power.

Traveltime estimation of first arrivals and later phases using the modified graph method for a crustal structure analysis (지각구조 해석을 위한 수정 그래프법을 이용한 초동 및 후기 시간대 위상의 주시 추정)

  • Kubota, Ryuji;Nishiyama, Eiichiro;Murase, Kei;Kasahara, Junzo
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.105-113
    • /
    • 2009
  • The interpretation of observed waveform characteristics identified in refraction and wide-angle reflection data increases confidence in the crustal structure model obtained. When calculating traveltimes and raypaths, wavefront methods on a regular grid based on graph theory are robust even with complicated structures, but basically compute only first arrivals. In this paper, we develop new algorithms to compute traveltimes and raypaths not only for first arrivals, but also for fast and later reflection arrivals, later refraction arrivals, and converted waves between P and S, using the modified wavefront method based on slowness network nodes mapped on a multi-layer model. Using the new algorithm, we can interpret reflected arrivals, Pg-later arrivals, strong arrivals appearing behind Pn, triplicated Moho reflected arrivals (PmP) to obtain the shape of the Moho, and phases involving conversion between P and S. Using two models of an ocean-continent transition zone and an oceanic ridge or seamount, we show the usefulness of this algorithm, which is confirmed by synthetic seismograms using the 2D Finite Difference Method (2D-FDM). Characteristics of arrivals and raypaths of the two models differ from each other in that using only first-arrival traveltime data for crustal structure analysis involves risk of erroneous interpretation in the ocean-continent transition zone, or the region around a ridge or seamount.

Reflective Bistable Chiral Splay Nematic Liquid Crystal Display (반사형 쌍안정 카이랄 스플레이 네마틱 액정표시소자)

  • Kim, Tae-Hyung;Lee, Joong-Ha;Shen, Zheng-Guo;Jang, Ji-Hyang;Kim, Jeong-Soo;Jhun, Chul-Gyu;Kwon, Soon-Bum;Yoon, Tae-Hoon;Kim, Jae-Chang
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.1
    • /
    • pp.23-29
    • /
    • 2011
  • Bistable chiral splay nematic liquid crystal display (BCSN LCD) is a memory type liquid crystal display using splay and $-\pi$ twist states as two stable states. When the cell thickness to pitch (d/p) ratio is 0.25, splay and $-\pi$ twist states have permanent memory time. However, when the transition from $-\pi$ twist state to splay state is caused by a fringe field, pixel regions show that the splay state is not perfect, but rather includes a contribution from the $-\pi$ twist state. In this paper, we propose a reflective BCSN LCD using $-\pi$ twist state in which the two stable states do not coexist. The fabricated reflective BCSN LC cell shows a high contrast ratio of over 30:1 and response times of 950 ms and 450 ms in vertical and fringe field switching, respectively. The proposed cell also shows wide viewing angle characteristics of $180^{\circ}$ in left- and right directions.

Analysis of Radiation Field and Block Pattern for Optimal Size in Multileaf Collimator (치료조사면 및 블록 유형분석을 통한 적정 다엽 콜리메이터 규모에 관한 연구)

  • Ahn, Seoung-Do;Yang, Kwang-Mo;Yi, Byong-Yong;Choi, Eun-Kyong;Chang, Hye-Sook
    • Radiation Oncology Journal
    • /
    • v.12 no.2
    • /
    • pp.253-262
    • /
    • 1994
  • The patterns of the conventional radiation treatment fields and their shielding blocks are analysed to determine the optimal dimension of the MultiLeaf Collimator (MLC) which is considered as an essential tool for conformal therapy. Total 1109 radiation fields from 303 patients (203 from Asan Medical center, 50 from Baek Hosp and 50 from Hanyang Univ. Hosp.) were analysed for this study. Weighted case selection treatment site (from The Korean Society of Therapeutic Radiology 1993). Ninety one percent of total fields have shielding blocks. Y axis is defined as leaf movement direction and it is assumed that MLC is installed on the cranial-caudal direction. The length of X axis were distributed from 4cm to 40cm (less than 21cm for $95\%$ of cases), and Y axis from 5cm to 38cm (less than 22cm for $95\%$ of cases). The shielding blocks extended to less than 6cm from center of the field for $95\%$ of the cases. Start length for ninety five percent of block is less than 10cm for X axis and 11cm for Y axis. Seventy six percent of shielding blocks could be placed by either X or Y axis direction, $7.9\%$ only by Y axis, $5.1\%$ only by X axis and It is reasonable to install MLC for Y direction. Ninety five percent of patients can be treated with coplanar rotation therapy without changing the collimator angle. Eleven percent of cases of cases were impossible to replace with MLC. Futher study of shielding technique is needed for $11\%$ impossible cases. The treatment field dimension of MLC should be larger than $21cm{\times}22cm$. The MLC should be designed as a pair of 21 leaves with 1cm wide for an acceptable resolution and 17cm long to enable the leaf to overtravel at least 6cm from the treatment field center.

  • PDF

Study on Degradation Characteristic of Plastic Artwork for Conservation (플라스틱 작품 보존을 위한 열화 특성 연구)

  • Yu, Ji A;Cho, Ha Jin;Han, Ye Bin;Lee, Hyun Ju;Lee, Sang Jin;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.31 no.2
    • /
    • pp.87-94
    • /
    • 2015
  • Plastic artwork can be appeared crack, change of color and whitening event by various environment conditions. A large scale plastic artwork often exhibits in outside it will be directly degraded by physical and chemical degradation factor such as strong sunlight, high humidity and rainfall. We should know degradation characteristic of plastics to prevent these damages. In this study, we studied degradation characteristic of plastics (5 types of wide use plastics; polypropylene, polystyrene, polyethylene, polyvinyl chloride, polyurethane) depending on various artificial degradation conditions such as high temperature, ultraviolet and these complex conditions (high temperature and ultraviolet). As a result, polypropylene, polystyrene and polyethylene show the most visible change especially polypropylene, polystyrene. Polypropylene didn't show a great change degree of tensile strength and contact angle, on the other hand polystyrene did. Polypropylene and polystyrene weakened by photo degradation, polyvinyl chloride and polyurethane had relatively good light stability. Also the high temperature and complex conditions were most degradation characteristic. High temperature worked for degradation catalyst because its energy can not enough worked for cut off binding energy of plastics while ultraviolet condition effected as directly degradation condition. Though following results, we expect it can be applied to investigation of degradation factor depending on plastic artwork materials and basic result of plastic artworks conservation.

V700 Cygni: A Dynamically Active W UMa-type Binary Star II

  • Kim, Chun-Hwey;Jeong, Jang-Hae
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.2
    • /
    • pp.151-161
    • /
    • 2012
  • An intensive analysis of 148 timings of V700 Cyg was performed, including our new timings and 59 timings calculated from the super wide angle search for planets (SWASP) observations, and the dynamical evidence of the W UMa W subtype binary was examined. It was found that the orbital period of the system has varied over approximately $66^y$ in two complicated cyclical components superposed on a weak upward parabolic path. The orbital period secularly increased at a rate of $+8.7({\pm}3.4){\times}10^{-9}$ day/year, which is one order of magnitude lower than those obtained by previous investigators. The small secular period increase is interpreted as a combination of both angular momentum loss (due to magnetic braking) and mass-transfer from the less massive component to the more massive component. One cyclical component had a $20.^y3$ period with an amplitude of $0.^d0037$, and the other had a $62.^y8$ period with an amplitude of $0.^d0258$. The components had an approximate 1:3 relation between their periods and a 1:7 ratio between their amplitudes. Two plausible mechanisms (i.e., the light-time effects [LTEs] caused by the presence of additional bodies and the Applegate model) were considered as possible explanations for the cyclical components. Based on the LTE interpretation, the minimum masses of 0.29 $M_{\odot}$ for the shorter period and 0.50 $M_{\odot}$ for the longer one were calculated. The total light contributions were within 5%, which was in agreement with the 3% third-light obtained from the light curve synthesis performed by Yang & Dai (2009). The Applegate model parameters show that the root mean square luminosity variations (relative to the luminosities of the eclipsing components) are 3 times smaller than the nominal value (${\Delta}L/L_{p,s}{\approx}0.1$), indicating that the variations are hardly detectable from the light curves. Presently, the LTE interpretation (due to the third and fourth stars) is preferred as the possible cause of the two cycling period changes. A possible evolutionary implication for the V700 Cyg system is discussed.

TRIO (Triplet Ionospheric Observatory) CINEMA

  • Lee, Dong-Hun;Seon, Jong-Ho;Jin, Ho;Kim, Khan-Hyuk;Lee, Jae-Jin;Jeon, Sang-Min;Pak, Soo-Jong;Jang, Min-Hwan;Kim, Kap-Sung;Lin, R.P.;Parks, G.K.;Halekas, J.S.;Larson, D.E.;Eastwood, J.P.;Roelof, E.C.;Horbury, T.S.
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.42.3-43
    • /
    • 2009
  • Triplets of identical cubesats will be built to carry out the following scientific objectives: i) multi-observations of ionospheric ENA (Energetic Neutral Atom) imaging, ii) ionospheric signature of suprathermal electrons and ions associated with auroral acceleration as well as electron microbursts, and iii) complementary measurements of magnetic fields for particle data. Each satellite, a cubesat for ion, neutral, electron, and magnetic fields (CINEMA), is equipped with a suprathermal electron, ion, neutral (STEIN) instrument and a 3-axis magnetometer of magnetoresistive sensors. TRIO is developed by three institutes: i) two CINEMA by Kyung Hee University (KHU) under the WCU program, ii) one CINEMA by UC Berkeley under the NSF support, and iii) three magnetometers by Imperial College, respectively. Multi-spacecraft observations in the STEIN instruments will provide i) stereo ENA imaging with a wide angle in local times, which are sensitive to the evolution of ring current phase space distributions, ii) suprathermal electron measurements with narrow spacings, which reveal the differential signature of accelerated electrons driven by Alfven waves and/or double layer formation in the ionosphere between the acceleration region and the aurora, and iii) suprathermal ion precipitation when the storm-time ring current appears. In addition, multi-spacecraft magnetic field measurements in low earth orbits will allow the tracking of the phase fronts of ULF waves, FTEs, and quasi-periodic reconnection events between ground-based magnetometer data and upstream satellite data.

  • PDF