• Title/Summary/Keyword: Wide-Operating Range

Search Result 526, Processing Time 0.022 seconds

ACCELEROMETER SELECTION CONSIDERATIONS Charge and Integral Electronic Piezo Electric

  • Lally, Jim
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.1047-1051
    • /
    • 2004
  • Charge amplifier systems benefit from the very wide dynamic range of PE accelerometers by offering flexibility in adjusting the electrical output characteristics such as sensitivity and range. They are well suited for operation at high temperatures. Modern charge systems feature improved low noise operation, simplified digital controls, and dual mode operation for operation with charge or IEPE voltage mode sensors. high impedance circuitry is not well suited for operation in adverse field or factory environments. The resolution of a PE accelerometer may not be specified or known since noise is a system consideration determined by cable length and amplifier gain. IEPE accelerometrs operate from a constant current power source, provide a high-voltage, low-impedance, fixed mV/g output. They operate through long, ordinary, coaxial cable in adverse environments without degradation of signal quality. They have limited high temperature range. IEPE sensors are simple to operate. Both resolution and operating range are defined specifications. Cost perchannel is lower compared to PE systems since low-noise cable and charge amplifiers are not required.

  • PDF

Modeling and Control of an Engine Mount Using ER Fluids and Piezoactuators (ER 유체와 압전작동기를 이용한 엔진마운트의 모델링 및 제어)

  • Choi, Seung-Hoon;Choi, Young-Tai;Choi, Seung-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.500-510
    • /
    • 1996
  • This paper presents a new prototype of an engine mount for a passenger vehicle featuring ER(elector-rheological) fluids and piezoactuators. Conventional rubber mounts and various types of passive or semi-active hydraulic engine mounts have their own functional aims on the limited frequency band in the board engine operating frequency range. However, the proposed engine mount covers all frequency range of the engine operation. A mathematical model of the proposed engine mount is derived using the bond graph method which is inherently domain, the ER fluid is activated upon imposing electric field for vibration isolation while the piezoactuator. Computer control electric fluid for the ER fluid H.inf. cotrol technique is adopted for the piezoactuator. Computer simulation is undertaken in order to demonstrate isolation efficiency of the engine mount over wide operating frequency range.

Power Control Method for FB-SRC IH Cooktop System Considering Limited Switching Frequency Range Condition (가용 동작 주파수 범위를 고려한 FB-SRC 기반 IH 쿡탑 시스템의 전력 제어 방안)

  • Hwang, Yun-Seong;Lee, Joo-Seung;Kang, Seung-Hyun;Kwon, Man-Jae;Jang, Eunsu;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.3
    • /
    • pp.256-264
    • /
    • 2022
  • The frequency power control method (FCM) which has a wide operating frequency range is adopted for induction heating (IH) cooktops. When FCM is applied to the full-bridge series resonant converter (FB-SRC) based IH system, high-frequency switching of the inverter is required compared to the half-bridge SRC (HB-SRC)-based IH system. Therefore, the switching loss of the inverter increases, and applying FCM under the condition that the inverter operating frequency range is limited is difficult. Therefore, this paper proposes a control strategy with the phase shift power control method considering that limited frequency conditions are presented. Loss analysis following the control method is performed through simulation and mathematical analysis. In addition, the validity of the proposed control strategy is verified by analyzing the heating performance following the control method through the test results of the 3,200[W] prototype.

Sensorless Control of High-speed Type PMSM in Wide Speed Range using an Iterative Adaptive Flux Observer (반복 적응자속관측기를 이용한 초고속 영구자석형 동기전동기의 전영역 센서리스 제어)

  • Kim, Jong-Moo;Choi, Jeong-Won;Lee, Suk-Gyu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.168-175
    • /
    • 2009
  • This paper proposes an enhanced algorithm for sensorless control of 45,000rpm/22kw type Permanent Magnetic Synchronous Motor (PMSM) with air-foil bearing. The proposed algorithm is based on iterative adaptive flux observer for sensorless control of the motor in wide speed range by on-line estimating angle and velocity of rotor. Simulation error between actual and estimated angle of rotor is analyzed to enhance characteristics of frequency response of conventional adaptive flux observer, which results in stable response in wide range of speed. Using the iteration number for stable phase-delay characteristics, the observer enhances the dynamic characteristics of the observer within current control period. The experiment results show the reliable performance of the proposed algorithm through starting to high speed operating range.

A Design of High PSRR LDO over Wide Frequency Range without External Capacitor (외부 커패시터 없이 넓은 주파수 범위에서 높은 PSRR 갖는 LDO 설계)

  • Kim, Jin-Woo;Lim, Shin-Il
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.63-70
    • /
    • 2013
  • This paper describes a high PSRR low-dropout(LDO) linear regulator for wide frequency range without output-capacitor. Owing to both of the cascode compensation technique and the current buffer compensation technique in nested Miller compensation loop, the proposed LDO not only maintaines high stability but also achieves high PSRR over wide frequency range with reasonable on-chip capacitances. Since the external capacitor is removed by the proposed compensation techniques, the cost for pad is eliminated. The designed LDO works under the input voltage range from 2.5V to 4.5V and provides up to 10mA load current with the output voltage of 1.8V. The LDO was implemented with 0.18um CMOS technology and the area is 300um X 120 um. The measured power supply rejection ratio(PSRR) is -76dB and -43dB at DC and 1MHz, respectively. The operating current is 25uA.

Experimental Validation of a Direct Methanol Fuel Cells(DMFCs) model with a Operating Temperatures and Methanol Feed Concentrations (직접메탄올 연료전지의 농도 및 온도변화에 따른 실험적 검증)

  • Kang, Kyungmun;Ko, Johan;Lee, Giyong;Ju, Hyunchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.125.2-125.2
    • /
    • 2010
  • In this paper, both theoretical and experimental investigations have been performed to examine the effects of key operating parameters on the cell performance of a DMFCs (i.e., methanol feed concentration and operating temperature). For experiment, the membrane electrode assemblies (MEAs) were prepared using a conventional MEA fabrication method based on a catalyst coated electrode (CCE) and tested under various cell temperatures and methanol feed concentrations. The polarization curve measurements were conducted using in-house-made $25cm^2$ MEAs. The voltage-current density data were collected under three different cell temperatures ($50^{\circ}C$, $60^{\circ}C$, and $70^{\circ}C$) and four different methanol feed concentrations (1 M, 2 M, 3 M, and 4 M). The experimental data indicate that the measured I-V curves are significantly altered, depending on these conditions. On the other hand, previously developed one-dimensional, two-phase DMFC model is simulated under the same operating conditions used in the experiments. The model predictions compare well with the experimental data over a wide range of these operating conditions, which demonstrates the validity and accuracy of the present DMFC model. Furthermore, both simulation and experimental results exhibit the strong influences of methanol and water crossover rates through the membrane on DMFC performance and I-V curve characteristics.

  • PDF

Numerical Study on the Droplet Vaporization Characteristics of Dimethyl Ether(DME) Droplet (DME 액적의 증발특성 해석)

  • 유용욱;류종혁;김용모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.69-75
    • /
    • 2004
  • The present study is numerically investigated for the high pressure effects on the vaporization process of the DME droplet. The evaporation rate of DME droplets is about twice that of dodecane droplets at the same chamber condition. The DM droplet vaporization characteristics is parametrically studied for the wide range of the operating conditions encountered with the high pressure combustion process.

Design of robust controller for the longitudinal autopilot system of BTT missile using QFT (QFT를 이용한 BTT 미사일 종방향 오토파일럿 시스템의 강인제어기 설계)

  • 김석우;윤경한;김영철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.418-421
    • /
    • 1997
  • A design method of robust controller for the longitudinal autopilot of BTT missile is considered. The difficulties are a set of linearized dynamic models which corresponds to different operating points has a wide range of parameters and it has even Non-Minimum Phase(NMP) zeros. In this paper, such a family of models is expressed by an interval plant. Then a robust control design method using QFT is represented. A simulation result shows that the proposed controller satisfies the given specification well.

  • PDF

Fuel Droplet Vaporization Characterization in High-Pressure Flow Field (고압 유동장에서의 액적증발 특성 해석)

  • You, Yongwook;Kim, Yongmo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.8
    • /
    • pp.1121-1131
    • /
    • 1998
  • The present study is numerically investigated for the high-pressure effects on the vaporization process in the convection-dominating flow field. Numerical results agree well with the available experimental data. The fuel droplet vaporization characterization is parametrically studied for the wide range of the operating conditions encountered with the high-pressure combustion process of turbocharged diesel engines.

A CMOS Temperature Control Circuit for Crystal-on-Chip Oscillator

  • Park, Cheol-Young
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.103-106
    • /
    • 2005
  • This paper reports design and fabrication of CMOS temperature sensor circuit using MOSIS 0.25um CMOS technology. The proposed circuit has a temperature coefficient of $13mV/^{\circ}C$ for a wide operating temperature range with a good linearity. This circuit may be applicable to the design of one-chip IC where quartz crystal resonator is directly mounted on CMOS oscillator chips.

  • PDF