• Title/Summary/Keyword: Wide-Band Antenna

Search Result 310, Processing Time 0.02 seconds

Design Optimization of an Enhanced Stop-band UWB Bow-Tie Antenna

  • Choi, Kyung;Kim, Hyeong-Seok;Hwang, Hee-Yong
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.793-799
    • /
    • 2018
  • An improved design of Ultra Wide Band(UWB) Bow-Tie antenna, which can control an enhanced wide stop-band, is presented. The mutually coupled slot-pair improves and controls the rejection band. The UWB antenna is composed of an electromagnetically coupled Bow-Tie patch and a parasitic ground patch, whose working frequency is extended to full UWB range in this work. By adding slot-pairs on the main patch and optimizing, they can give any requested wide rejection bands and sharp skirt characteristics, as is often required for UWB antennas and multi-band antennas. All the parameters are precisely calculated by an adequate optimization method. The Particle Swarm Optimization(PSO) technique is appropriately adopted. The proposed design and method is proved to give and control the sharp-skirt wide stop-band to UWB Bow-Tie antennas.

Design of a Multi-Band and Wide-Band Antenna for a Portable Broadcasting Terminal (휴대 방송용 단말기에 적합한 다중 대역 및 광대역 안테나 설계)

  • Kim, Jeong-Pyo;Kim, Gi-Ho;Yang, Myo-Guen;Seong, Won-MO
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.4 s.119
    • /
    • pp.358-363
    • /
    • 2007
  • The multi-band and wide-band antenna for a portable broadcasting terminal is proposed. The proposed antenna consists of two radiators with a parallel structure. The antenna has an enough wide impedance bandwidth for the DVB-H(Digital Video Broadcasting-Handheld) service band since two radiators have adjacent resonance frequencies and operates in the DAB(Digital Audio Broadcasting) service band using the third harmonic of the radiator 1. The fabricated antenna has VSWR characteristics of less than 2:1 in the frequency band $470{\sim}740\;MHz$ for DVB-H and $1,450{\sim}1,480\;MHz$ for DAB. The measured peak gain of the antenna is $1.97{\sim}4.10\;dBi$ in the DVB-H band and $1.98{\sim}2.04\;dBi$ in the DAB band.

Optimal Design of a UWB-MIMO Antenna with a Wide Band Isolation using ES Algorithm (진화 전략 기법을 이용한 광대역 격리형 UWB-MIMO 안테나 최적설계)

  • Han, Jun-Hee;Kim, Hyeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.12
    • /
    • pp.1661-1666
    • /
    • 2014
  • In this paper, a compact planar ultra wideband (UWB, 3.1~10.6GHz) multiple-input multiple-output (MIMO) antenna is proposed. This antenna consists of two monopole planar UWB antennas and T-shaped stub decoupling between two antennas. The T-shaped stub improve the isolation characteristic at the wide band. The evolution strategy(ES) algorithm is employed to optimized design. As a result, optimized antenna has a return loss less than -10dB and the isolation less than -15dB from 3.1GHz to 10.6GHz. During the optimization process, the antenna gain is enhanced at lower band and the envelope correlation coefficient(ECC) is lower than 0.003.

Design of the Elliptic Monopole Antenna for Ultra Wide-Band (Ultra Wide-Band용 타원형 모노폴 안테나 설계)

  • Cha, Sang-Jin;Lee, Hyeon-Jin;Lim, Yeong-Seog
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.442-445
    • /
    • 2003
  • The use of a single UWB antenna which covers a wide range of frequencies is very desirable for future wireless communications system. In this paper, we propose a novel wide band printed elliptic monopole antenna for UWB(Ultra wide Band). Wideband planar monopole disc antenna have been recently studied. The proposed antenna can cover UWB frequencies from 3.5GHz to 12GHz. it is determined from 10dB return loss. The antenna consists of the printed elliptical monopole disc with microstrip-line feed. Elliptic disc of antenna and ground height operate important to matching. The results of measurement are almost similar to those of simulation.

  • PDF

A Ultra-wide Band Half-wavelength Loop Antenna using Self-complementary Principle for UAV Applications (자기상보 원리를 이용한 UAV 탑재용 초광대역 반파장 루프 안테나)

  • Yoon, Myung-Han;Kim, Jun-Won;Woo, Jong-Myung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.213-219
    • /
    • 2015
  • In this paper, we present a low-profile ultra-wide band half-wavelength loop antenna for UAV (Unmanned Aerial Vehicle) applications. The proposed antenna has an ultra-wide band using self-complementary principle. Also, the ground was located between radiators for reducing height of the antenna using image theory. Dimensions of proposed antenna have $0.20{\lambda}_L{\times}0.14{\lambda}_L{\times}0.16{\lambda}_L$ (${\lambda}_L$ is the free-space wavelength at lowest frequency). Measured -10 dB bandwidth was ultra-wide band as more than 50 : 1(over 0.3 GHz ~15 GHz). The radiation patterns of the antenna was omnidirectional like monopole antennas. Moreover, we tried the antenna mounted on under a fuselage of a scaled UAV. As a result, the proposed antenna on the UAV maintained ultra-wide band and omnidirectional radiation patterns at all frequencies.

CPW-fed to CPS Dipole Antenna of Microstrip Tapered Balun with Triangular Loop Director

  • Lee, Hyeonjin
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1365-1368
    • /
    • 2014
  • A CPW-fed to CPS dipole antenna of triangular loop director by microstrip tapered balun is proposed for dual and wide band operations, in this paper. The proposed antenna is consisted of a CPW-fed to CPS transform, microstrip tapered balun element, CPS dipole driver and triangular loop director. A dual and wide bandwidth of the proposed dipole antenna is realized by introducing the triangular loop director and taper matching element. The operated frequency bandwidth is 1GHz (2.14~3.14 GHz) and 1.9 GHz (4.6~6.5 GHz) to return loss criterion of less than 10 dB. The measured return loss of the proposed antenna showed good results of the dual and wide band operating frequency and the radiation pattern. The proposed antenna is able to support WLAN wireless communications applications.

Wide Band Bow-Tie Slot Antenna with Dual Reflector (듀얼 반사판을 이용한 광대역 보우타이 슬롯 안테나)

  • Lee Jae-Sung;Lee Sang-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.8
    • /
    • pp.1352-1358
    • /
    • 2006
  • In this paper, we have fabricated and tested a broad band bow-tie slot antenna with dual reflector. If we put 1/2 length thin and long slot on a wide metal plate, the slot antenna radiates efficient and strong radio wave as same as 1/2 dipole antenna does. we made with bow-tie form slot which has wider broad band than normal rectangular slot. At first, we made and test a single reflector slot antenna. To enlarge the broad band, we inserted another reflection plate between the slot antenna and reflection plate. After the test, we could have known that the low band(VSWR<2.0) has about $22%(793MHz\sim992MHz)$, high band(VSWR<2.0) has about 61% (1626MHz\sim3064MHz).

A Design of Wide band Dual Folded Microstrip Antennas (광대역 이중 폴디드 마이크로스트립 안테나 설계)

  • 이현진;임영석
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.7
    • /
    • pp.75-79
    • /
    • 2004
  • In this paper, a single plane wide band microstrip antenna for integrated circuit as MMIC and LTCC is designed and fabricated. A new configuration for a wide band microstrip antenna with omni-directional pattern is proposed. This antenna consists of two rectangular folded dipoles, which are fed by a coplanar waveguide(CPW). It was effected stabilization ground that a signal plane of CPW feed have been limited ground plane. Therefore, a ground plane of folded structure should be extended outside folded antenna in this research. The characteristics of the proposed antenna were analyzed by using an FDTD methods. The return loss and radiation patterns were simulated and measured. The proposed antenna is get 120MHz bandwidth of PCS band and 250MHz bandwidth of IMT2000 band, used ISM band.

Design of Ultrawide Band Monopole Antenna (광대역 모노폴 안테나 설계)

  • 이종필;박성욱
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2001.11a
    • /
    • pp.136-139
    • /
    • 2001
  • In this paper, we propese a novel wide band printed monopole antenna called the staircase bow-tie monopole antenna (SBMA). We apply an extraordinarr method for an impedance matching to conventional bow-tie monopoles. So we get the SBMA with a very wide band. Our antenna is smaller than a quarter wavelength in size but provides a 2:1 VSWR bandwidth of about 77.8%. An antenna gain and a radiation pattern are about 1.7dBi and omni-directional at 1.7 GHz, respeotively.

  • PDF

A Wide Band Antenna Design using the Synthesis of Independent Dual Resonance Modes for Manpack SDR(Software Defined Radio) (독립적인 이중 공진 모드 합성을 이용한 광대역 SDR 무전기 안테나 설계)

  • Yu, Byunggil;Dong, Moo-Ho;Cho, Ji-Haeng;Han, Sung-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.57-63
    • /
    • 2014
  • In this paper, we have proposed a wide band antenna for manpack SDR(Software Defined Radio). The proposed antenna consists of feeding post, flexible gooseneck and two radiating elements composed of a upper and lower radiators. The upper radiator has a longer electrical length than the lower radiator in order to operate in the lower frequency. Also, the resonant frequency and impedance characteristics of the antenna can be adjusted independently for two radiators. Therefore, the proposed antenna can be achieved wide impedance bandwidth by the combination of two independent resonance modes. To analyze the characteristics of the antenna in the design process is employed the equivalent circuit theory and EM(Electro-Magnetic) simulation. The measurement results show that the proposed antenna have the sufficient wide bandwidth, above -3.4dBi of the gain and fairly good radiation pattern over the wide bandwidth.