• 제목/요약/키워드: Wide power range of motors

검색결과 36건 처리시간 0.021초

유한요소법을 이용한 SRM의 특성해석 (Analysis of Switched Reluctance Motors Characteristics using FEM)

  • 이준호;이향범;이기식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.139-141
    • /
    • 1996
  • The switched reluctance motors(SRM) are simple and robust in structure. Because the wide range of power and speed, their application field is increasing. In order to design the motors and to evaluate the performance of them properly, an accurate study about the analysis of motor characteristics is required. In this paper, for the analysis of SRM characteristics, the finite element method which is based on the solution of combined equations both the electromagnetic field equations and the circuit equations of stator is adopted. The analysis model is to he assumed two-dimensional and the nonlinear property of magnetic materials is considered by Newton-Raphson method. To verify the usefulness of the proposed algorithm, commercial SRM is chosen and simulated. The computed torques obtained by Maxwell Stress Tensor are compared with the experimental data and it is found that they are in good agreement. By applying the proposed algorithm to two cases, currents of stator and torques at every angular positions of rotor are obtained step by step. Comparing them, one can recognize that torque ripple of SRM can he improved by controlling the switching sequences of driving circuits.

  • PDF

Design to Reduce Cost and Improve the Mechanical Durability of IPMSM in Traction Motors

  • Lee, Ki-Doek;Lee, Ju
    • 조명전기설비학회논문지
    • /
    • 제28권5호
    • /
    • pp.106-114
    • /
    • 2014
  • The interior permanent-magnet synchronous motor (IPMSM) is often used for the traction motor of hybrid electric vehicles (HEVs) and electric vehicles (EVs) due to its high power density and wide speed range. This paper introduces the 120kW class IPMSM for traction motors in military trucks. This system, as a SHEV (series hybrid electric vehicle), requires a traction motor that can generate high torque. This study introduces a way to reduce costs by proposing a design approach that creates reluctance torque that can be maximized by varying the dq-axis inductance. If a model designed by a design approach meets the desired torque, the magnetic torque can be reduced by an amount equal to the increase in reluctance torque and consequently the amount of permanent magnets can be reduced. A reduction gear and high speed operation of motors are necessary for the miniaturization of the motor. Thus, a fairly large centrifugal force is generated due to the high speed rotation. This force causes mechanical interference between the rotor and the stator, and a design approach for adding an iron bridge is explained to solve the interference. In this study, the initial model and the improved model that reduces cost and improves mechanical durability are compared by FEA, and the models are produced. Finally, the FEM results were verified experimentally.

평면형 구조와 Halbach 자석배열 선형모터를 이용한 리니어 XY 스테이지의 설계 (Design of Linear XY Stage using Planar Configuration and Linear Motors with Halbach Magnet Array)

  • 김기현;이문구
    • 한국생산제조학회지
    • /
    • 제19권4호
    • /
    • pp.553-561
    • /
    • 2010
  • In flat panel display or semiconductor industries, they install the equipments with fine line width and high throughput for fabrication and inspection. The equipments are required to have the linear stage which can position the work-piece with high speed, fine resolution on wide range of motion. In this paper, a precision planar linear XY stage is proposed. The stage has a symmetric planar window configuration and is guided by air-bearings on granite plate. The symmetric planar window configuration makes the stage has robustness against dynamic and thermal disturbances. The air-bearings let the stage move smooth on straight guide bar and flat granite surface. The stage is actuated by linear motor with Halbach magnet array (HMA). HMA generates more confined magnetic flux than conventional array. The linear motors are optimized by using sequential quadratic programming (SQP) with the several constraints that are thermal dissipation, required power, force ripple and so on. The planar linear XY stage with the symmetric planar configuration and the linear motors is implemented and then the performance such as force ripple, resolution and stroke are evaluated.

In-wheel 모터를 이용한 전기자동차 구동시스템의 구현 (Implementation of In-wheel Motor Driving System for Electric Vehicle)

  • 윤시영;이주
    • 전기학회논문지
    • /
    • 제62권6호
    • /
    • pp.750-755
    • /
    • 2013
  • In-wheel motor system gets the driving force from direct-driven motor in the wheel of electric vehicle. It is known as good system for vehicles, from an efficiency, packaging, handling and safety. This paper describes motor and inverter technologies, system configuration and control algorithms for in-wheel type electric vehicle. It is necessary to control on an interrelation perspective because this system drives two motors at same time. In system design, IPMSM(Interior Permanent Magnet Synchronous Motor) including a wide operating range and high-speed rpm is used and flux weakening control is performed in constant power range. Under the torque command from the host controller, auto control box, inverter's output torque is calculated with using torque estimation technique and applied to actual vehicle driving system. It is verified that the configuration and the algorithm are suitable for the in-wheel motor system.

A Novel Three Phase Series-Parallel Resonant Converter Fed DC-Drive System

  • Daigavane, Manoj;Suryawanshi, Hiralal;Khan, Jawed
    • Journal of Power Electronics
    • /
    • 제7권3호
    • /
    • pp.222-232
    • /
    • 2007
  • This paper presents the application of a single phase AC-to-DC converter using a three-phase series parallel (SPRC) resonant converter to variable speed dc-drive. The improved power quality converter gives the input power factor unity over a wide speed range, reduces the total harmonic distortion (THD) of ac input supply current, and makes very low ripples in the armature current and voltage waveform. This soft-switching converter not only possesses the advantages of achieving high switching frequencies with practically zero switching losses but also provides full ranges of voltage conversion and load variation. The proposed drive system is the most appropriate solution to preserve the present separately excited de motors in industry compared with the use of variable frequency ac drive technology. The simulation and experimental results are presented for variable load torque conditions. The variable frequency control scheme is implemented using a DSP- TMS320LF2402. This control reduces the switching losses and current ripples, eliminates the EMI and improves the efficiency of the drive system. Experimental results confirm the consistency of the proposed approach.

고분자 전해질 연료전지 시스템의 효율향상을 위한 공기공급 최적화 (Optimization of Air Supply for Increased Polymer Electrolyte Fuel Cell System Efficiency)

  • 주건엽;조기춘;선우명호;최서호
    • 한국자동차공학회논문집
    • /
    • 제19권3호
    • /
    • pp.44-51
    • /
    • 2011
  • Polymer Electrolyte Fuel Cells (PEFCs) operate in wide-range changes in temperature, humidity, and electric current for automotive applications. In order to operate automotive PEFC efficiently, optimal air supply is required to adjust to these changes. This paper presents an air-supply optimization process that consists of experiments, modeling of the PEFC system, and optimization. The objective is to establish an air supply suitable for the required power for PEFC system and optimized with a Lagrange multiplier. Our simplified PEFC system model is used as a constraint for optimization problem. The result of this paper presents that efficient operation of PEFC system can be achieved by air-supply optimization.

정태회로해석에 의한 전력부하로서의 유도전동기 시뮬레이션 및 파라메터 식별 (Simulation and Parameter Identification of Induction Machine in Load Modeling based on the Static Circuit Analysis)

  • 이봉용;심건보;고태규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.370-374
    • /
    • 1991
  • This paper presents a static circuit model for static ant dynamic simulation of induction motors and identification of motor parameters. Instead of usual T-circuits, equivalent ${\pi}$-circuit has been proposed so that power Inputs into motor terminals can very easily calculated with very well known load flow method. It has been shown that, with wide range variation of applied voltage and frequency, successful static simulations can be performed and further the proposed static model can be used to simulate dynamic characteristics. Finally it is shown also that motor parameters can easily be identified based on the proposed static circuit.

  • PDF

권선계자형 동기전동기의 d축 쇄교자속에 의한 계자전류리플 보상 기법 개발 (Development of Field Current ripple Compensating Method by d-axis Flux-linkage in WRSM)

  • 황대연;구본관
    • 전기학회논문지
    • /
    • 제67권9호
    • /
    • pp.1165-1173
    • /
    • 2018
  • Recently, owing to environmental problems and instability of rare earth resources market, non-rare earth electric motors are attracting attention. As a non-rare earth motor type, a wound rotor synchronous motor(WRSM) has high power density and wide driving range further it can reduce loss by field current control during field weakening control at high speed. However, since the d-axis flux of the WRSM is coupled with the rotor circuit, the fluctuation in the d-axis flux linkage affects the rotor circuit, which causes ripple of the field current and torque. In this paper, we propose the field current ripple compensation method by injecting the feedforward voltage. the proposed compensating method was demonstrated by simulation and experiments.

디지털 히스테리시스 제어기를 이용한 SRM의 위치제어시스템 (A Position Control System of SRM using Digital Hysteresis Controller)

  • 백원식;김남훈;최경호;김동희;김민회;황돈하
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 추계학술대회 논문집
    • /
    • pp.41-45
    • /
    • 2001
  • This paper presents an implementation of motion control system of Switched Reluctance Motor (SRM) using digital hysteresis controller by TMS320F240 DSP. SRM position control system possess several advantages over other motors, including high efficiency, simple structure, low cost, and four-quadrant operation at a wide speed range, especially for the servo drive systems with precision, stability and fast response characteristics in the industrial applications. In the suggested motion control system, position control using digital hysteresis controller is developed, and is evaluated using experimental testing. The developed system for cost reduction and high-performance by fully digital controller is shown a good response characteristic of motion control results.

  • PDF

저속영역에서 최대 토크 발생이 가능한 대용량 BLDC 모터의 설계 (The design of high-capacity BLDC motor with maximum torque in low speed)

  • 조승현;김철우;빈재구;조수억;최철
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(2)
    • /
    • pp.824-827
    • /
    • 2003
  • Recently, Development of Rare Earth Permanent magnet with the high remanence, high coercivity allow the design of brushless motors with very high efficiency over a wide speed range. Cogging torque is produced in a permanent magnet by magnetic attraction between the rotor mounted permanent magnet and the stator teeth. It is an undesired effect that contributes to the machines output ripple, vibration, and noise. This cogging torque can be reduced by variation of magnet arc length, airgap length, magnet thickness, shifting the magnetic pole and varying the radial shoe depth and etc. In this paper, Some airgap length and magnet arc that reduce cogging torque are found by FEM(Finite element method). The SPM type of high-capacity BLDC motor is optimized as a sample model.

  • PDF