• Title/Summary/Keyword: WiFi module

Search Result 76, Processing Time 0.021 seconds

An Inter-floor Noise Prevention System using an Open-source Controller (오픈소스 컨트롤러를 사용한 층간 소음 방지 시스템)

  • Kim, Tae-Hoon;Jang, Hyuk-Jae;Lee, Won-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.5
    • /
    • pp.899-906
    • /
    • 2017
  • This paper proposes an inter-floor noise prevention system using an open-source controller. In the proposed system, Arduino which is a widely used open source controller analyzes sound signals and vibration signals with fast fourier transform. When the magnitude of the band-passed signal excesses the noise reference considering transmission loss of a panel or a wall, the system displays warning messages on an LCD module and a mobile device for users to be aware of the noise condition. In the experiment, the system has succeeded extracting and processing the band-passed signals between 130 Hz ~ 1040 Hz. When the magnitude of the extracted signal that is subtracted from the transmission loss exceeds 45 dB, the system has displayed the warning message on an LCD module and a mobile devicefor noise reduction.

Implementation of Home Security System using a Mobile App (모바일 앱을 이용한 홈 시큐리티 시스템 구현)

  • Kwon, Young-Il;Jeong, Sam-Jin
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.4
    • /
    • pp.91-96
    • /
    • 2017
  • In this paper, we aim to respond efficiently to crime by using Arduino and smartphone apps in response to increasing number of house-breaking crimes. It receives the signal of the sensor installed in the house and connects it with the app of the smartphone. To use the app, you can download the app from the user's smartphone, launch the app, and operate the operation outside the home, not only inside the house, by linking the executed app. Among the sensors installed in the house, the movement detection sensor is used to enhance the security, and the gas leakage sensor and the flame detection sensor can be used to easily detect the risk of fire and to prevent the fire early. Security is further enhanced by the ability to remotely control the front door with a smartphone. After that, various sensors can be added and it can be developed as a WiFi module in addition to the Bluetooth module.

An App Visualization design based on IoT Self-diagnosis Micro Control Unit for car accident prevention

  • Jeong, YiNa;Jeong, EunHee;Lee, ByungKwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.1005-1018
    • /
    • 2017
  • This paper proposes an App Visualization (AppV) based on IoT Self-diagnosis Micro Control Unit (ISMCU) for accident prevention. It collects a current status of a vehicle through a sensor, visualizes it on a smart phone and prevents vehicles from accident. The AppV consists of 5 components. First, a Sensor Layer (SL) judges noxious gas from a current vehicle and a driver's driving habit by collecting data from various sensors such as an Accelerator Position Sensor, an O2 sensor, an Oil Pressure Sensor, etc. and computing the concentration of the CO collected by a semiconductor gas sensor. Second, a Wireless Sensor Communication Layer (WSCL) supports Zigbee, Wi-Fi, and Bluetooth protocol so that it may transfer the sensor data collected in the SL to ISMCU and the data in the ISMCU to a Mobile. Third, an ISMCU integrates the transferred sensor information and transfers the integrated result to a Mobile. Fourth, a Mobile App Block Programming Tool (MABPT) is an independent App generation tool that changes to visual data just the vehicle information which drivers want from a smart phone. Fifth, an Embedded Module (EM) records the data collected through a Smart Phone real time in a Cloud Server. Therefore, because the AppV checks a vehicle' fault and bad driving habits that are not known from sensors and performs self-diagnosis through a mobile, it can reduce time and cost spending on accidents caused by a vehicle's fault and noxious gas emitted to the outside.

A Study on Development of Industrial Engine Monitoring System Using Smart Phone Application (스마트폰 앱을 이용한 산업용 엔진의 모니터링 시스템 개발에 관한 연구)

  • Jeong, C.S.;Kim, Y.S.;Jeong, Y.M.;Kho, J.H.;Jeong, K.S.;Lee, H.S.;Yang, S.Y.
    • Journal of Drive and Control
    • /
    • v.10 no.2
    • /
    • pp.7-12
    • /
    • 2013
  • In this study, a wire/wireless communication system transmitting the operation data of engine from the ER (Engine Room) to the engine controller of ECR(Engine Control Room) has been developed through the communication of ISM(Industrial Science Medical) Band for the test operation environment improvement of medium speed engine. This wire/wireless communication system is composed of the RTU (Remote Terminal Unit) gathering and transmitting engine data as well as the MCU (Master Control Unit) receiving engine status information from the RTU to be sent to the engine controller (PLC). Through this study, a trial product of RTU and MCU has been manufactured. A test bench that has made temperature, pressure and pick-up sensor into a module for the local test of prototype was produced a test bench. In addition, at the same time save the data to a Web server and the smart phone real-time monitoring system has been developed using Wi-Fi communications. The ultimate objective of this study is to develop a wireless smart phone monitoring system of engine for the operator of engine to be able to monitor and control engine status even from the outside of engine room and control room based on this study.

Electronic Roll Book using Electronic Bracelet.Child Safe-Guarding Device System (전자 팔찌를 이용한 전자 출석부.어린이 보호 장치 시스템)

  • Moon, Seung-Jin;Kim, Tae-Nam;Kim, Pan-Su
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.143-155
    • /
    • 2011
  • Lately electronic tagging policy for the sexual offenders was introduced in order to reduce and prevent sexual offences. However, most sexual offences against children happening these days are committed by the tagged offenders whose identities have been released. So, for the crime prevention, we need measures with which we could minimize the suffers more promptly and actively. This paper suggests a new system to relieve the sexual abuse related anxiety of the children and solve the problems that electronic bracelet has. Existing bracelets are only worn by serious criminals, and it's only for risk management and positioning, there is no way to protect the children who are the potential victims of sexual abuse and there actually happened some cases. So we suggest also letting the students(children) wear the LBS(Location Based Service) and USN(Ubiquitous Sensor Network) technology based electronic bracelets to monitor and figure out dangerous situations intelligently, so that we could prevent sexual offences against children beforehand, and while a crime is happening, we could judge the situation of the crime intelligently and take swift action to minimize the suffer. And by checking students' attendance and position, guardians could know where their children are in real time and could protect the children from not only sexual offences but also violent crimes against children like kidnapping. The overall system is like follows : RFID Tag for children monitors the approach of offenders. While an offender's RFID tag is approaching, it will transmit the situation and position as the first warning message to the control center and the guardians. When the offender is going far away, it turns to monitoring mode, and if the tag of the child or the offender is taken off or the child and offender stay at one position for 3~5 minutes or longer, then it will consider this as a dangerous situation, then transmit the emergency situations and position as the second warning message to the control center and the guardians, and ask for the dispatch of police to prevent the crime at the initial stage. The RFID module of criminals' electronic bracelets is RFID TAG, and the RFID module for the children is RFID receiver(reader), so wherever the offenders are, if an offender is at a place within 20m from a child, RFID module for children will transmit the situation every certain periods to the control center by the automatic response of the receiver. As for the positioning module, outdoors GPS or mobile communications module(CELL module)is used and UWB, WI-FI based module is used indoors. The sensor is set under the purpose of making it possible to measure the position coordinates even indoors, so that one could send his real time situation and position to the server of central control center. By using the RFID electronic roll book system of educational institutions and safety system installed at home, children's position and situation can be checked. When the child leaves for school, attendance can be checked through the electronic roll book, and when school is over the information is sent to the guardians. And using RFID access control turnstiles installed at the apartment or entrance of the house, the arrival of the children could be checked and the information is transmitted to the guardians. If the student is absent or didn't arrive at home, the information of the child is sent to the central control center from the electronic roll book or access control turnstiles, and look for the position of the child's electronic bracelet using GPS or mobile communications module, then send the information to the guardians and teacher so that they could report to the police immediately if necessary. Central management and control system is built under the purpose of monitoring dangerous situations and guardians' checking. It saves the warning and pattern data to figure out the areas with dangerous situation, and could help introduce crime prevention systems like CCTV with the highest priority. And by DB establishment personal data could be saved, the frequency of first and second warnings made, the terminal ID of the specific child and offender, warning made position, situation (like approaching, taken off of the electronic bracelet, same position for a certain time) and so on could be recorded, and the data is going to be used for preventing crimes. Even though we've already introduced electronic tagging to prevent recurrence of child sexual offences, but the crimes continuously occur. So I suggest this system to prevent crimes beforehand concerning the children's safety. If we make electronic bracelets easy to use and carry, and set the price reasonably so that many children can use, then lots of criminals could be prevented and we can protect the children easily. By preventing criminals before happening, it is going to be a helpful system for our safe life.

Low Performance Electronics Evolved into Smart Appliances (스마트 가전으로 진화된 저사양 생활가전)

  • Back, Jonghui;Kim, Kyosun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.9
    • /
    • pp.107-115
    • /
    • 2013
  • Smart appliances with multi-media and telecommunication equipments provide users complicated convenience functions. On the contrary, 8-bit controller-based low performance electronics still cannot afford such multimedia and telecommunication. If we find a way to have low-end electronics connected and provide complicated functions, they can be also made "smart". Fortunately, 8-bit controllers used in low-end appliances have UART, which can be connected to any of BlueTooth, Wi-Fi and ZigBee communication modules which can, in turn, communicate with smart devices. Any communication module can be attached to the low-end electronics due to the variety of smart devices' connectivity at the other side. Although the convenience functions seem complicated, they are actually macros in a script form composed of micro commands which implement the base functions of appliances. Since the kinds of the base functions are not that many, the low-end electronic appliances will become "smart" if their control program can be extended to execute sequentially the micro commands in any combination. Such simple innovation has not seen the world, until now due to the overhead of the additionally required hardware such as display devices and buttons. The high-quality display and touch screen functionalities of smart devices can replace the required hardware, and remove the overhead completely. In fact, the low-end appliances become smart as if an "evolution kit" is newly equipped.