• Title/Summary/Keyword: Whole body torque

Search Result 25, Processing Time 0.02 seconds

Study of the Self-Propulsion Test and Analysis for a Pumpjet Propulsor in LCT (대형 캐비테이션터널에서 펌프젯 추진기 자항성능 시험 및 해석 기법 연구)

  • Ahn, Jong-Woo;Seol, Han-Shin;Jung, Hong-Seok;Park, Young-Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.5
    • /
    • pp.271-279
    • /
    • 2022
  • In order to study the self-propulsion test and analysis techniques for the submerged body with pumpjet propulsors in the Large Cavitation Tunnel (LCT), at the Korea Research Institute of Ships and Ocean Engineering, a set of test equipment was designed and manufactured. The pumpjet propulsor is composed of rotor, stator and duct which results in the strong interaction between the components. To measure the thrust and torque for duct and stator, a ring-shaped sensor was applied. The test equipment including pumpjet is installed on the stern of the submerged body. As the whole pumpjet including duct and stator was considered as the propulsor from pumpjet open-water test, the self-propulsion test was conducted in the same way. The total thrust, combined thrust of rotor, duct and stator was used for the pumpjet self-propulsion test analysis. Accordingly, the self-propulsion test and analysis were conducted in the same way as those of the conventional propeller. The full-scale performances of the pumpjet propulsor were compared with those of the reference propeller. On the basis of the present study, it is thought that the pumpjet propulsor would be designed optimally.

Effect of Balustrade Heights and Blanket Types on Mechanism of Falling Accident during Shaking-Off the Dust of the Blanket from Balcony

  • Hyun, Seunghyun;Ryew, Checheong
    • International journal of advanced smart convergence
    • /
    • v.9 no.2
    • /
    • pp.38-48
    • /
    • 2020
  • The shaking-off the dust from balustrade of higher stories may cause the higher risk of falling accident rate. Main purpose of this study was to quantify an effect of balustrade heights and blanket types on possibility of falling accident relative to one's motor controllability during shaking-off the dust of the blanket from balcony. Female participants, who consisted of total 10 under condition of balustrade height of 3 kinds (90 cm, 110 cm, 130 cm) and blanket types (0.4 kg, 1.6 kg, 3 kg, 200230 cm), performed repetitively the task of shaking-off the dust of the blanket. Vertical position and velocity of center of mass due to increase of blanket weigh in case of balustrade height of 90 cm was increased, but vertical ground reaction force was decreased swiftly. That is, the higher balustrade height was, the less distance difference between center of mass and center of pressure was.

Study on Failure in Outer Ring of Work Roll Bearing in Hot Rod Rolling Mill (열간 선재 압연기에서 작업롤 베어링의 외측링 파손에 관한 연구)

  • Byon, Sang-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.38-45
    • /
    • 2017
  • A finite element analysis-based approach which investigates the causes of the breakdown in the outer ring of the choke at hot rod rolling mill is presented. Two-dimensional drawings of the whole vertical-type mill stand are transformed into three-dimensional CAD models. Non-linear elasto-plastic deformation analysis of material at the roll gap is performed for computing roll force and torque of the work roll. Then, the reaction forces of the bearing rings together with a set of roller bearings that support the work roll are obtained by means of rigid body motion analysis. Finally, stress behaviors in the bearing rings together with a set of roller bearings that support the work roll are investigated by linear elastic analysis. Results reveal that stress at the contact area between the outer ring and roller bearing is extraordinary high when an internal gap between an external surface of the outer ring and the internal surface of the chock due to wear of the inside of the chock occurs.

Wind Tunnel Test for the Propeller Performance of the High Altitude UAV (고고도 무인기용 프로펠러 성능특성 풍동시험)

  • Cho, Teahwan;Kim, Yangwon;Park, Donghun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.3
    • /
    • pp.189-196
    • /
    • 2018
  • Propeller performance measurement system for high altitude UAV was designed and applied to the wind tunnel test for 2 propeller models with a diameter around 1 m. Mechanical power of the propeller was directly measured by using the torque sensor installed on the rotating axis. The thrust of whole operation body including the propeller was measured by thrust road cell. The guide rail system was suggested to reduce the weight influence of operation body on the thrust road cell. The influence of each measured variables on the aerodynamic coefficients was studied with the repeatability and uncertainty analysis. This analysis result shows that the accuracies of the road cell and the wind velocity were major factors for the thrust coefficient. Propeller performance with typical RPM was measured with various wind speeds and the test results was summarized by performance coefficients for 5 different RPM.

Research Trends for Performance, Safety, and Comfort Evaluation of Agricultural Tractors: A Review

  • Kabir, Md. Shaha Nur;Ryu, Myong-Jin;Chung, Sun-Ok;Kim, Yong-Joo;Choi, Chang-Hyun;Hong, Soon-Jung;Sung, Je-Hoon
    • Journal of Biosystems Engineering
    • /
    • v.39 no.1
    • /
    • pp.21-33
    • /
    • 2014
  • Background: Significant technological development and changes happened in the tractor industries. Contrariwise, the test procedures of the major standard development organizations (SDO's) remained unchanged or with a little modification over the years, demanding new tractor test standards or improvement of existing ones for tractor performance, safety, and comfort. Purpose: This study focuses on reviewing the research trends regarding performance, safety and comfort evaluation of agricultural tractors. Based on this review, few recommendations were proposed to revise or improve the current test standards. Review: Tractor power take-off power test using the DC electric dynamometer reduced human error in the testing process and increased the accuracy of the test results. GPS signals were used to determine acceleration and converted into torque. High capacity double extended octagonal ring dynamometer has been designed to measure drawbar forces. Numerical optimization methodology has been used to design three-point hitch. Numerous technologies, driving strategies, and transmission characteristics are being considered for reducing emissions of gaseous and particulate pollutants. Engine emission control technology standards need to be revised to meet the exhaust regulations for agricultural tractors. Finite Element Analysis (FEA) program has been used to design Roll-Over Protective Structures (ROPS). Program and methodology has been presented for testing tractor brake systems. Whole-body vibration emission levels have been found to be very dependent upon the nature of field operation performed, and the test track techniques required development/adaptation to improve their suitability during standardized assessment. Emphasizes should be given to improve visibility and thermal environment inside the cab for tractor operator. Tractors need to be evaluated under electromagnetic compatibility test conditions due to large growing of electronic devices. Research trends reviewed in this paper can be considered for possible revision or improvement of tractor performance, safety, and comfort test standards.