• Title/Summary/Keyword: Whole blood metals

Search Result 9, Processing Time 0.027 seconds

Sex-specific Profiles of Blood Metal Levels Associated with Metal-Iron Interactions

  • Lee, Byung-Kook;Kim, Yangho
    • Safety and Health at Work
    • /
    • v.5 no.3
    • /
    • pp.113-117
    • /
    • 2014
  • The mechanisms by which iron is absorbed are similar to those of divalent metals, particularly manganese, lead, and cadmium. These metals, however, show different toxicokinetics in relation to menarche or menopause, although their interaction with iron is the same. This review focuses on the kinetics of these three toxic metals (manganese, lead, and cadmium) in relation to menarche, pregnancy, and menopause. The iron-manganese interaction is the major factor determining sex-specific differences in blood manganese levels throughout the whole life cycle. The effects of estrogen overshadow the association between iron deficiency and increased blood lead concentrations, explaining why women, despite having lower ferritin concentrations, have lower blood lead concentrations than men. Iron deficiency is associated with elevated cadmium levels in premenopausal women, but not in postmenopausal women or men; these findings indicate that sex-specific differences in cadmium levels at older ages are not due to iron-cadmium interactions, and that further studies are required to identify the source of these differences. In summary, the potential causes of sex-specific differences in the blood levels of manganese, lead, and cadmium differ from each other, although all these three metals are associated with iron deficiency. Therefore, other factors such as estrogen effects, or absorption rate as well as iron deficiency, should be considered when addressing environmental exposure to toxic metals and sex-specific differences in the blood levels of these metals.

Development and Verification of a Simultaneous Analytical Method for Whole Blood Metals and Metalloids for Biomonitoring Programs (바이오모니터링 프로그램을 위한 혈중 금속류 동시분석법 개발 및 확인 평가)

  • Cha, Sangwon;Oh, Eunha;Oh, Selim;Han, Sang Beom;Im, Hosub
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.1
    • /
    • pp.64-77
    • /
    • 2021
  • Objective: Biological monitoring of trace elements in human blood samples has become an important indicator of the health environment. The purpose of this study was to detect and evaluate multiple metal items in blood samples based on ICP-MS, to perform comparative evaluation with the existing analysis method, and to develop and verify a new method. Methods: 100 μL of whole blood from 80 healthy subjects was used to analyze ten metals (Sb, tAs, Cd, Pb, Mn, Hg, Mo, Ni, Se, Tl) using ICP-MS. Verification of the analysis method included calculation of linearity, accuracy, precision and detection limits. In addition, a comparative test with the conventional graphite furnace atomic absorption spectroscopy (GF-AAS) method was performed. In the case of Pb, Cd, and Hg in whole blood, cross-analysis between Pb, Cd, and Hg analysis methods was performed to confirm the difference between the existing method and the new method (ICP-MS). Results: The coefficient of determination (R2) was 0.999 or higher in seven items and 0.995 or higher in three items. The Pb result showed that Pearson's correlation coefficient was very high at 0.983, and the intraclass correlation coefficient was 0.966. The Cd result showed that Pearson's correlation coefficient was 0.917 between the existing method and the new analysis concentration value. Its intraclass correlation coefficient was 0.960, and there was no significant difference between the two groups. Hg had a low correlation at 0.687, and the intraclass correlation coefficient was 0.761, which was lower than that of Pb and Cd. The intra-day and inter-day accuracy of Pd and Cd were satisfactory, but Hg did not meet the criteria for both accuracy and precision when compared with the conventional analysis method. Conclusion: This study can be meaningful in that it proposes a more efficient and feasible analysis method by verifying a blood heavy metal concentration experiment using multiple simultaneous analyses. All samples were processed and analyzed using the new ICP-MS. It was confirmed that the agreement between the two methods was very high, with the agreement between the current and new methods being 0.769 to 0.998. This study proposes an efficient simultaneous methodology capable of analyzing multiple elements with small samples. In the future, studies of various applications and the reliability of ICP-MS analysis methods are required, and research on the verification of accurate, precise, and continuous analysis methods is required.

The Inhibitory Effects of Intestine-oriented Lactobacillus sp. KP-3 on the Accumulation of Heavy Metals in Sprague Dawley rats (Sprague Dawley 쥐에서 장내 유래 Lactobacillus sp. KP-3의 중금속 축적 저해 효과)

  • Kim, Shin Yeon;Kim, Hyun Pyo
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.164-173
    • /
    • 2015
  • To investigate the effect of lactic acid bacteria on the heavy metal adsorption from internal organs and blood, lactic acid bacteria were isolated from human feces. Some strains resistant to heavy metals were selected by incubation in agar media containing each of chrome and cadmium salts. Among them, a strain named KP-3 was ultimately chosen due to its higher growth rate in selective broth medium containing the heavy metals at the concentration of 0.01%. The strain was identified as Lactobacillus sp. based on its morphological, cultural and physiological characteristics. For evaluating the ability to prevent accumulation of heavy metals by selected Lactobacillus sp. strain in vivo, Sprague Dawley rats were fed with heavy metal salts (cadmium, chrome and lead) with or without cultured whole cells for 7 days. The amounts of heavy metals accumulated in liver, kidney and blood were analyzed. As a result, chrome was accumulated to kidney mostly, and lead was frequently found in liver and kidney. Experimental group (rats fed with lactic acid bacteria) showed less accumulation of heavy metal than control group (rats fed with saline solution). The inhibition rates of heavy metal accumulation were calculated to 41.8% (Cd), 33.4% (Cr) and 44.2% (Pb). Especially, feeding lactic acid bacteria strongly reduced accumulation of cadmium in blood. The results showed that feeding Lactobacillus sp. KP-3 could prevent the bioaccumulation of heavy metals in the living body.

The Relation between Blood Lead Concentration, Epidemiologyic Factors and Body Iron Status (혈중 납 농도와 역학적 요인 및 체내 철 수준과의 관련성)

  • Park Sang-Woo;Kim Ki-Young;Kim Dong-Won;Choi Seong-Jin;Kim Hyun-Sook;Choi Byung-Sun;Choi Mi-Kyeong;Park Jung-Duck
    • Environmental Analysis Health and Toxicology
    • /
    • v.21 no.2 s.53
    • /
    • pp.153-163
    • /
    • 2006
  • Essential metals have been known to interact with non-essential toxic metals in the aspects of absorption, transport and deposition in the body. Iron deficiency has been reported to increase lead and/or cadmium absorption. The relation between iron and lead has been understood well in children but not in adults. Two hundred seventy adults (118 males and 152 females) were recruited from 3 different residental areas (rural, coastal and urban) to investigate the effects of environmental lead exposure on body iron status. The subjects were interviewed for life-style and diet of the last 24 hours, and measured for blood lead and body iron. The lead concentration in the whole blood was determined by a flameless method using an atomic absorption spectrophotometry. The body iron was evaluated with values of hemoglobin, hematocrit, RBCs, serum total iron, unsaturated iron binding capacity, total iron binding capacity and ferritin. The mean concentration of blood lead in adult was $3.31{\mu}g/dL$. The concentration was higher in male ($3.97{\mu}g/dL$) than in female ($2.86{\mu}g/dL$). The blood lead was influenced by residental area, life-style, smoking and drinking, occupation and diet habit of subjects, but not by age. A positive correlation was observed between the blood lead level and the serum iron or ferritin. These results suggest that environmental lead exposure in Korean adult may not be higher than other developed and developing countries. It is further indicated that blood lead in adult could be influenced by life-style, and environmental and genetic factors but no inverse relation with body iron as shown in children.

A study on the concentration of trace metal elements in whole blood of the women in reproductive ages in urban and rural area (도시 및 농촌지역 가임연령 여성들의 혈중 미량금속원소의 함량에 관한 조사)

  • Jun, Jin-Ho
    • Journal of Preventive Medicine and Public Health
    • /
    • v.17 no.1
    • /
    • pp.95-106
    • /
    • 1984
  • To acquire the essential basic data to the establishment of control measure for the hazardous health effect that could be caused by harmful metals, the author measured the concentrations of trace metals in whole blood of women of $20{\sim}39$ years old living in urban and rural area using atomic absorption spectrophotometer. The summarized results were as follows; 1. The mean concentration of zinc in whole blood was $10.69{\pm}8.07{\mu}g/ml$ in rural area. The frequency distribution by zinc concentration level was nearly L-type and the cumulative frequency distribution was showed bimodal type in both area. 2. The mean iron concentration in whole blood was $323.09{\pm}87.15{\mu}g/ml$ and $322.07{\pm}104.74{\mu}g/ml$ in urban and rural area, respectively. The frequency distribution was similar to normal distribution type in both area, but the cumulative distribution was unimodal type in urban area and bimodal type in rural area. 3. The mean magnesium concentration was $41.08{\pm}19.58{\mu}g/ml$ and $40.28{\pm}16.82{\mu}g/ml$ in the area, respectively. The frequency distribution type had skewness to the right and the cumulative frequency distribution was unimodal type in both area. 4. The mean copper concentration was $1.417{\pm}0.761{\mu}g/ml$ and $1.375{\pm}0.743{\mu}g/ml$ in the area, respectively. The frequency distribution type had skewness to the right and the cumulative frequency distribution was bimodal type in both area. 5. The mean manganese concentration was $0.079{\pm}0.039{\mu}g/ml$ and $0.07{\pm}0.058{\mu}g/ml$ in the area, respectively. The frequency distribution type had skewness to the right in both area but slight irregular in rural area and the cumulative distribution was unimodal and bimodal type in urban and rural area, respectively. 6. The mean cadmium concentration in whole blood was $0.031{\pm}0.026{\mu}g/ml$ in urban and $0.028{\pm}0.023{\mu}g/ml$ in rural area. The frequency distribution type had skewness to the right and cumulative frequency distribution was bimodal type in both area.

  • PDF

The Monitoring of Heavy Metals in Human Bloods of Middle School Students (중학생의 혈액 중 중금속 모니터링)

  • Park Hee Ra;Kim Meehye;Kwun Ki-Sung;Kim Soon Ki;Heo Su-Jeong;Kim Kwang_Jin;Yum Tae-Kyung;Choi Kwang Sik;Kim Soo Yeon
    • Journal of Food Hygiene and Safety
    • /
    • v.20 no.2
    • /
    • pp.83-88
    • /
    • 2005
  • This study was conducted to estimate the contents of heavy metals including lead, cadmium, zinc, copper as well as iron status(serum iron, total iron binding capacity, feritin etc)in blood samples of middle school students(n=300). The contents of heavy metals were determined using the GF-AAS (Graphite furnace Atomic Absorption Spectrophotometer). The microwave digestion method and dilution method were compared. The dilution method showed the better recovery and detection limit than microwave digestion method. The values of toxic metals in whloe blood of boys & girls were 3.46 & 3.05 for Pb,0.063 & 0.065 for Cd respectively (ug/dL). Also the values of trace metals in serum of boys & girls were 105.9 & 92.6 for Zn, 98.3 & 99.0 for Cu respectively (ug/dL). The prevalence of iron deficiency was $7.5\%$ in 146 boys and $14.3\%$ in 156 girls. The mean values of lead in girls were higher in iron deficiency, iron deficiency anemia and anemia groups than normal group. The mean values of lead and zinc were higher in boys compared to those in girls(P<0.05), the mean values of cadmium and copper in boys were similar to those in girls. Our results of toxic metals such as Pb & Cd showed lower to CDC's(Centers for Disease Control) blood lead levels of concern for children, 10 ug/dL.

Airborne Concentrations of Welding Fume and Metals of Workers Exposed to Welding Fume (용접사업장 근로자의 흄 및 금속 노출농도에 대한 평가와 혈중 금속 농도)

  • Choi, Ho-Chun;Kim, Kangyoon;An, Sun-Hee;Park, Wha-Me;Kim, So-Jin;Lee, Young-Ja;Chang, Kyou-Chull
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.9 no.1
    • /
    • pp.56-72
    • /
    • 1999
  • Airborne concentrations of welding fumes in which 13 different metals such as Al, Cd, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Si, Sn, Ti, and Zn were analyzed were measured at 18 factories including automobile assembly and manufactures, steel heavy industries and shipyards. Air samples were collected by personal sampler at each worker's worksite(n=339). Blood levels of Cd, Cu, Fe, Mn, Pb and Zn were also measured from samples taken from 447 welders by atomic absorption spectrometry and compared with control values obtained from 127 non-exposed workers. The results were as follows ; 1. Among various welding types, $CO_2$ welding 70.2 % were widely used, shielded metal arc welding(SMAW) 22.1 % came next, and rest of them were metal inert gas(MIG) welding, submerged arc welding(SAW), spot welding(SPOT) and tungsten inert gas(TIG) welding. 2. Welding fume concentration was $0.92mg/m^3$($0.02{\sim}15.33mg/m^3$) at automobile assembly and manufactures, $4.10mg/m^3$($0.02{\sim}70.75mg/m^3$) at steel heavy industries and $5.59mg/m^3$($0.30{\sim}91.16mg/m^3$) at shipyards, respectively, showing significant difference among industry types. Workers exposed to high concentration of welding fumes above Korean Permissible Exposure Limit(KPEL) amounted to 7.9 % and 12.5 %, in $CO_2$ welding and in SMAW at automobile assembly and manufactures and 62.7 % in $CO_2$ welding, and 12.5 % in SMAW at shipyards, and 66.2 % in $CO_2$ welding and 70.6 % in SMAW at steel heavy industries. 3. Geometric mean of airborne concentration of each metal released from welding fumes was below one 10th of KPEL in all welding types. Percentage of workers, however, exposed to airborne concentration of metals above KPEL amounted to 16.8 % in Mn and 7.6 % in Fe in $CO_2$ welding; 37.5 % in Cu in SAW, 30 % in Cu in TIG; and 25 % in Pb in SPOT welding. As a whole, 76 Workers(22.4%) were exposed to high concentration of any of the metals above KPEL. 4. There were differences in airborne concentration of metals such as Al, Cd, Cr, Cu. Fe. Mn, Mo, Ni, Pb, Si, Sn, Ti and Zn by industry types. These concentrations were higher in shipyards and steel heavy industries than in automobile assembly and manufactures. Workers exposed to higher concentration of Pb above KPEI amounted to 7.4 % of workers(7/94) in automobile assembly and manufactures. In shipyards, 19.2 % of workers(19/99) were over-exposed to Mn and 7.1 % (7/99) to Fe above KPEL. In steel heavy industries, 14.4 %(21/146), 7.5 %(11/146) and 13 %(19/146) were over-exposed to Mn, Fe and Cu, respectively. As a whole, 76 out of 339 workers(22.4%) were exposed to any of the metals above KPEL. 5. Blood levels of Cd, Cu, Fe, Mn, Pb, and Zn in welders were $0.11{\mu}g/100m{\ell}$, $0.84{\mu}g/m{\ell}$, $424.4{\mu}g/m{\ell}$, $1.26{\mu}g/100m{\ell}$, $5.01{\mu}g/100m{\ell}$ and $5.68{\mu}g/m{\ell}$, respectively, in contrast to $0.09{\mu}g/100m{\ell}$, $0.70{\mu}g/m{\ell}$, $477.2{\mu}g/m{\ell}$, $0.73{\mu}g/100m{\ell}$, $3.14{\mu}g/100m{\ell}$ and $6.15{\mu}g/m{\ell}$ in non-exposed control groups, showing significantly higher values in welders but Fe and Zn.

  • PDF

Selenium Effect on the Frequency of SCEs Induced by Heavy Metals in Human Lymphocytes (Selenium이 mercury, cadmium 및 chromium에 의한 자매염색분체교환(姉妹染色分體交換)의 빈도(頻度)에 미치는 영향(影響))

  • Koh, Dai-Ha;Ki, No-Suk
    • Journal of Preventive Medicine and Public Health
    • /
    • v.23 no.1 s.29
    • /
    • pp.1-10
    • /
    • 1990
  • The protective effect of sodium selenite($Na_2SeO_3$) against the cytogenetic toxicity of heavy metals was investigated on human whole-blood cultures in relation to induction of sister chromatid exchange (SCE) in secondary metaphase chromosome. Methylmercury chloride($CH_3HgCl$), cadmium chloride($CdCl_2$), potassium dichromate($K_2Cr_2O_7$), and sodium selenite caused to the typically dose-dependent increase in sister chromatid exchanges (SCEs) by the concentrations ranging from $0.3{\mu}M\;to\;10{mu}M$. However, the inductions of sister chromatid exchanges by methylmercury chloride or cadmium chloride were inhibited by the simultaneous addition of sodium selenite $1.2{mu}M$. The frequencies of SCE were decreased to the level of control in the molar ratios as 2:1, 1:1, 1:2, and 1:4 of selenium selenite vs. methylmercury chloride, and as 1:1 and 1:2 of selenium selenite vs. cadmium chloride, while the frequencies of SCE induced by potassium dichromate were not changed by the addition of sodium selenite in culture condition. Mitotic indices were decreased in the higher concentrations of chemicals and not significantly changed by the simultaneous addition of sodium selenite to the culture condition containing each chemicals.

  • PDF

Effect of Cadmium-contaminated Brown Rice Diet on Accumulation of Heavy Metal in Rats (카드뮴 오염 현미 섭취에 의한 랫드의 체내 중금속 축적)

  • Kim, Jae-Young;Im, Hyo-Bin;Kim, Seong-Jo;Baek, Seung-Hwa
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.2
    • /
    • pp.133-140
    • /
    • 2012
  • Movement and accumulation of cadmium in male Sprague-Dawley rats, fed with brown rice from nearby Janghang smeltery area were investigated. The rat fed with five different cadmium level diets made with Cd-polluted during 12 weeks. The brown rice-polluted with 0.87 ppm Cd (PBR) was sampled from products in the Janghang smeltery area. Diets of brown rice group were brown rice (BR, 0.002 ppm Cd), each 50% of BR and PBR (BR+PBR 50%, 0.44 ppm Cd) and PBR (PBR 100%, 0.87 ppm Cd). To compare with BR+PBR 50%, the another group diet composed the feed (FE, 0.002 Cd ppm) and each 50% of FE and PBR (FE+PBR 50%, 0.44 ppm Cd). Accumulation of Cd, Zn and Cu in blood, liver and kidney rats was measured by GF-AAS. The weight gain in BR groups and FE groups were different 0.22-0.26 and 1.08-1.26 g/day, respectively. Daily intake cadmium was 10.77 and 22.36 ${\mu}g/rat$ in BR+PBR 50% and PBR 100%, and 8.83 ${\mu}g/rat$ in FE+PBR 50%. Cadmium contents in diets were higher, and total intake of the heavy metals was more increased on the whole. Weights of liver and kidney in FE+PBR 50% group was 2.64 and 2.27 folds higher than those in BR+PBR 50% group. Cadmium contents in blood were increased with intake of BR diet, but Zn and Cu were decreased with them. In the diet groups with the same Cd concentration, Cd content of FE+PBR 50% was higher 1.27 times than that of BR+PBR 50%. In the diet group of BR, BR+PBR 50%, and PBR 100%, the increase of Cd concentration was significantly different to the increase of Cd content in the livers. In the same condition of Cd concentration, Cd contents were higher in the BR+PBR 50% group. In the diet groups of BR, BR+PBR 50%, and PBR 100%, the increase of Cd content in the kidneys led to the increase of Zn and Cu contents. In the same condition of Cd concentration, the diet group with the addition of BR was shown to be 3.11 times higher than with the addition of FE. In view of the results so far achieved, It was closely related with Cd, Zn, and Cu content.