• Title/Summary/Keyword: Whole Body Counter

Search Result 25, Processing Time 0.029 seconds

APPLICATION OF WHOLE BODY COUNTER TO NEUTRON DOSE ASSESSMENT IN CRITICALITY ACCIDENTS

  • Kurihara, O.;Tsujimura, N.;Takasaki, K.;Momose, T.;Maruo, Y.
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.249-253
    • /
    • 2001
  • Neutron dose assessment in criticality accidents using Whole Body Counter (WBC) was proved to be an effective method as rapid neutron dose estimation at the JCO criticality accident in Tokai-mura. The 1.36MeV gamma-ray of $^{24}Na$ in a body can be detected easily by a germanium detector. The Minimum Detectable Activity (MDA) of $^{24}Na$ is approximately 50Bq for 10miniute measurement by the germanium-type whole body counter at JNC Tokai Works. Neutron energy spectra at the typical shielding conditions in criticality accidents were calculated and the conversion factor, whole body activity-to-organ mass weighted neutron absorbed dose, corresponding to each condition were determined. The conversion factor for uncollied fission spectrum is 7.7 $[(Bq^{24}Na/g^{23}Na)/mGy]$.

  • PDF

Assessment of Counting Efficiency of a Whole Body Counter by Human Body Size and Standing Position Using Monte Carlo Method (몬테카를로 방법론을 이용한 측정 대상의 인체 크기와 측정 위치에 따른 전신계수기 계수효율 평가)

  • Pak, Min Jung;Yoo, Jae Ryong;Ha, Wi-Ho;Lee, Seung-Sook;Kim, Kwang Pyo
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.1
    • /
    • pp.46-53
    • /
    • 2014
  • For the case of radiation emergency, it is required to assess internal contamination of the public, including children as well as adults. The objective of the present study was to assess counting efficiency of a whole body counter by human body size and standing position of the measurement person. In this study, the FASTSCAN whole body counter used at National Radiation Emergency Medical Center of Korean Institute of Radiological and Medical Science was simulated by a radiation transport computer code. The simulation results of the counting efficiencies agreed well with measurements within the 2% of discrepancy for 4-year child and 5% for adults. The standing positions of the people were adjusted by body size to find the consistent trend of the counting efficiencies by human body size. Body size scaling factors of the whole body counter were derived to consider human body size and improve the measurement accuracy. The counting efficiency assessment methodology in this study can be successively used to improve the measurement accuracy when using a whole body counter for the case of radiation emergency.

The Whole Body Counting Experience on the Internal Contamination of $^{131}I$ at Korean Nuclear Power Plants (전신계측기를 이용한 원전종사자의 $^{131}I$ 내부방사능 측정 경험 및 개선방향에 대한 연구)

  • Kim, Hee-Geun;Kong, Tae-Young
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.3
    • /
    • pp.121-128
    • /
    • 2009
  • During the maintenance period at Korean nuclear power plants, internal exposure of radiation workers occurred by the inhalation of $^{131}I$ released to the reactor building when primary system was opened. The internal radioactivity of radiation workers contaminated by $^{131}I$ was immediately measured using a whole body counter and the whole body counting was performed again after a few days. In this study, the intake estimated from the record history of entrance to radiation control areas and the measurement results of air sampling for $^{131}I$ in those areas, were compared with that from the results of whole body counting. As a result, it was concluded that the intake estimation using whole body counting and air sampling showed similar results.

A Study on the Selection of Optimal Counting Geometry for Whole Body Counter (WBC) (인체 내부방사능 측정용 전신계측기의 최적 검출 모드 선정에 관한 연구)

  • Ko, Jong Hyun;Kim, Hee Geun;Kong, Tae Young;Lee, Goung Jin
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • A whole body counter (WBC) is used in nuclear power plants (NPP) to identify and measure internal radioactivity of workers who is likely to ingest or inhale radionuclides. WBC has several counting geometry, i.e. the thyroid, lung, whole body and gastrointestinal tract, considered with the location where radionuclides are deposited in the body. But only whole body geometry is used to detect internal radioactivity during whole body counting at NPPs. It is overestimated internal exposure dose because this measured values are indicated as the most conservative radioactivity values among the them of others geometry. In this study, experiments to measure radioactivity depending on the counting geometry of WBC were carried out using a WBC, a phantom, and standard radiation sources in order to improve overestimated internal exposure dose. Quantitative criteria, could be selected counting geometry according to ratio of count rates of the upper and lower detectors of the WBC, are provided through statistical analysis method.

Application of the Detection of External Contamination on Radiation Workers for Bed Type Whole Body Counting Using Monte Carlo Method (몬테카를로 방법을 적용한 bed type 전신계측기의 방사선작업종사자 외부오염 검출 응용)

  • Kim, Jeong-In;Lee, Byoung-Il
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.4
    • /
    • pp.242-245
    • /
    • 2013
  • Monte Carlo method was applied to discriminate the external contamination on radiation workers in nuclear power plants for internal dose assessment generally used with a bed type scanning detector whole body counter. Korean voxel model with internal contamination was used to estimate the detection patterns of whole body scanning. Also, the BOMAB model with various external contamination was assumed to compare with detection of radionuclides inside the human body. From the comparison of detection efficiency between front and back side up, external contamination was easily distinguished.

Performance testing of a FastScan whole body counter using an artificial neural network

  • Cho, Moonhyung;Weon, Yuho;Jung, Taekmin
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3043-3050
    • /
    • 2022
  • In Korea, all nuclear power plants (NPPs) participate in annual performance tests including in vivo measurements using the FastScan, a stand type whole body counter (WBC), manufactured by Canberra. In 2018, all Korean NPPs satisfied the testing criterion, the root mean square error (RMSE) ≤ 0.25, for the whole body configuration, but three NPPs which participated in an additional lung configuration test in the fission and activation product category did not meet the criterion. Due to the low resolution of the FastScan NaI(Tl) detectors, the conventional peak analysis (PA) method of the FastScan did not show sufficient performance to meet the criterion in the presence of interfering radioisotopes (RIs), 134Cs and 137Cs. In this study, we developed an artificial neural network (ANN) to improve the performance of the FastScan in the lung configuration. All of the RMSE values derived by the ANN satisfied the criterion, even though the photopeaks of 134Cs and 137Cs interfered with those of the analytes or the analyte photopeaks were located in a low-energy region below 300 keV. Since the ANN performed better than the PA method, it would be expected to be a promising approach to improve the accuracy and precision of in vivo FastScan measurement for the lung configuration.

The Experience on Intake Estimation and Internal Dose Assessment by Inhalation of Iodine-131 at Korean Nuclear Power Plants (국내 원전에서 $^{131}I$ 내부 흡입 에 따른 섭취량 산정과 내부피폭 방사선량 평가 경험 몇 개선방향에 대한 연구)

  • Kim, Hee-Geun;Kong, Tae-Young
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.3
    • /
    • pp.129-136
    • /
    • 2009
  • During the maintenance period at Korean nuclear power plants, internal exposure of radiation workers occurred by the inhalation of $^{131}I$ released to the reactor building when primary system opened. The internal radioactivity of radiation workers contaminated by $^{131}I$ was measured using a whole body counter. Intake estimation and the calculation of committed effective dose were also conducted conforming to the guidance of internal dose assessments from publications of International Commission on Radiological Protection. Because the uptake and excretion of $^{131}I$ in a body occur quickly and $^{131}I$ is accumulated in the thyroid gland, the estimated intakes showed differences depending on the counting time after intake. In addition, since ICRP publications do not provide the intake retention fraction (IRF) for whole body of $^{131}I$, the IRF for thyroid was substitutionally used to calculate the intake and subsequently this caused more error in intake estimation. Thus, intake estimation and the calculation of committed effective dose were conducted by manual calculation. In this study, the IRF for whole body was also calculated newly and was verified. During this process, the estimated intake and committed effective dose were reviewed and compared using several computer codes for internal dosimetry.

Determination of counting efficiency considering the biodistribution of 131I activity in the whole-body counting measurement

  • MinSeok Park ;Jaeryong Yoo;Minho Kim ;Won Il Jang ;Sunhoo Park
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.295-303
    • /
    • 2023
  • Whole-body counters are widely used to assess internal contamination after a nuclear accident. However, it is difficult to determine radioiodine activity due to limitations in conventional calibration phantoms. Inhaled or ingested radioiodine is heterogeneously distributed in the human body, necessitating time-dependent biodistribution for the assessment of the internal contamination caused by the radioiodine intake. This study aims at calculating counting efficiencies considering the biodistribution of 131I in whole-body counting measurement. Monte Carlo simulations with computational human phantoms were performed to calculate the whole-body counting efficiency for a realistic radioiodine distribution after its intake. The biodistributions of 131I for different age groups were computed based on biokinetic models and applied to age- and gender-specific computational phantoms to estimate counting efficiency. After calculating the whole-body counting efficiencies, the efficiency correction factors were derived as the ratio of the counting efficiencies obtained by considering a heterogeneous biodistribution of 131I over time to those obtained using the BOMAB phantom assuming a homogeneous distribution. Based on the correction factors, the internal contamination caused by 131I can be assessed using whole-body counters. These correction factors can minimize the influence of the biodistribution of 131I in whole-body counting measurement and improve the accuracy of internal dose assessment.

Performance Comparison of Bed-type and Stand-type Commercial Whole Body Counter Made by Canberra for Internal Exposure Monitoring (Bed-type과 Stand-type 상용 전신계수기(Whole Body Counter)의 성능 비교)

  • Kim, Bong-Gi;Ha, Wi-ho;Kwon, Tae-Eun;Park, Min-Seok;Lee, Jun-Ho;Kim, Jong-Min;Lee, Sang-Gyung;Jung, Kyu-Hwan
    • Journal of radiological science and technology
    • /
    • v.41 no.5
    • /
    • pp.437-444
    • /
    • 2018
  • Whole-Body counters have been used to evaluate the internal contamination of gamma emitting radionuclides. Among the whole-body counters used in domestic nuclear facilities, Fastscan made by CANBERRA contains 2 NaI(Tl) detectors and is generally used to monitor the primary internal exposure. It has the advantage of achieving MDA even with short time measurements. Accuscan is a bed type, and has good energy resolution because it is composed of HPGe detector. Since the Accuscan with better energy resolution than Fastscan has better able to identify radionuclides, it is used to monitor secondary internal exposure. Some nuclear facilities have only Fastscan. We analyzed statistically whether Fastscan is enough to ensure accuracy and precision comparing with Accuscan. To do this, we prepared a CRM created by the Korea Research Institute of Standards and Science. We also obtained the data of 6 Fastscans and 5 Accuscans in domestic nuclear facilities. As a result of the study, although Fastscan compared with Accuscan is not as accurate as the Accuscan, the precision is statistically same. However, accuracy of Fastscan is in compliance with international standards except low energy range. In terms of accuracy and precision except radionuclides emitting low energy, it is possible to measure radioactivity inside workers even in nuclear facilities where only Fastscan is used.

Virtual calibration of whole-body counters to consider the size dependency of counting efficiency using Monte Carlo simulations

  • Park, MinSeok;Kim, Han Sung;Yoo, Jaeryong;Kim, Chan Hyeong;Jang, Won Il;Park, Sunhoo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4122-4129
    • /
    • 2021
  • The counting efficiencies obtained using anthropomorphic physical phantoms are generally used in whole-body counting measurements to determine the level of internal contamination in the body. Geometrical discrepancies between phantoms and measured individuals affect the counting efficiency, and thus, considering individual physical characteristics is crucial to improve the accuracy of activity estimates. In the present study, the counting efficiencies of whole-body counting measurements were calculated considering individual physical characteristics by employing Monte Carlo simulation for calibration. The NaI(Tl)-based stand-up and HPGe-based bed type commercial whole-body counters were used for calculating the counting efficiencies. The counting efficiencies were obtained from 19 computational phantoms representing various shapes and sizes of the measured individuals. The discrepancies in the counting efficiencies obtained using the computational and physical phantoms range from 2% to 33%, and the results indicate that the counting efficiency depends on the size of the measured individual. Taking into account the body size, the equations for estimating the counting efficiencies were derived from the relationship between the counting efficiencies and the body-build index of the subject. These equations can aid in minimizing the size dependency of the counting efficiency and provide more accurate measurements of internal contamination in whole-body counting measurements.