• Title/Summary/Keyword: Whitening cream

Search Result 23, Processing Time 0.016 seconds

Extracellular Vesicles from Korean Codium fragile and Sargassum fusiforme Negatively Regulate Melanin Synthesis

  • Jang, Bohee;Chung, Heesung;Jung, Hyejung;Song, Hyun-Kuk;Park, Eunhye;Choi, Hack Sun;Jung, Kyuhyun;Choe, Han;Yang, Sanghwa;Oh, Eok-Soo
    • Molecules and Cells
    • /
    • v.44 no.10
    • /
    • pp.736-745
    • /
    • 2021
  • Although various marine ingredients have been exploited for the development of cosmetic products, no previous study has examined the potential of seaweed extracellular vesicles (EV) in such applications. Our results revealed that EV from Codium fragile and Sargassum fusiforme effectively decreased α-MSH-mediated melanin synthesis in MNT-1 human melanoma cells, associated with downregulation of MITF (microphthalmia-associated transcription factor), tyrosinase and TRP1 (tyrosinase-related proteins 1). The most effective inhibitory concentrations of EV were 250 ㎍/ml for S. fusiforme and 25 ㎍/ml for C. fragile, without affecting the viability of MNT-1 cells. Both EV reduced melanin synthesis in the epidermal basal layer of a three-dimensional model of human epidermis. Moreover, the application of the prototype cream containing C. fragile EV (final 5 ㎍/ml) yielded 1.31% improvement in skin brightness in a clinical trial. Together, these results suggest that EV from C. fragile and S. fusiforme reduce melanin synthesis and may be potential therapeutic and/or supplementary whitening agents.

Antibacterial, Antioxidative and Antiaging Effects of Allium cepa Peel Extracts (양파껍질 추출물의 항균, 항산화 및 항노화 효과에 관한 연구)

  • Kim, Jung Eun;Kim, A Reum;Kim, Min Ji;Park, Soo Nam
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.178-184
    • /
    • 2011
  • In this study, the antibacterial, antioxidative and inhibitory effects of Allium cepa peel extracts on tyrosinase and elastase were investigated. MIC values of the ethyl acetate fraction of Allium cepa peel on especially, S. aureus among the skin resident flora (Staphylococcus aureus, S. aureus; Propionibacterium acnes, P. acnes; Pityrosporum ovale, P. ovale; Escherichia coli, E. coli) were 0.06%. The aglycone fraction showed more excellent free radical (1,1-diphenyl-2-picrylhydrazyl radical, DPPH) scavenging activity ($FSC_{50}=5.05{\mu}g/mL$). Reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) of the ethyl acetate fraction and aglycone fraction in the luminol-dependent $Fe^{3+}-EDTA/H_2O_2$ system were 0.05 and $0.03{\mu}g/mL$, respectively. The cellular protective effect of the aglycone fraction on the rose-bengal sensitized photohemolysis of human erythrocytes exhibited more prominent (${\tau}_{50}$, 480 min at $25{\mu}g/mL$). The inhibitory effects ($IC_{50}$) of the ethyl acetate fraction and aglycone fraction on tyrosinase were 9.16 and $8.68{\mu}g/mL$, the inhibitory effect ($IC_{50}$) of the aglycone fraction on elastase was $14.12{\mu}g/mL$ The transepidermal water loss of the cream containing 0.1% ethyl acetate fraction was decreased from $8.3g/m^2h$ in control to $6.8g/m^2h$ in the subjects applied with cream containing the ethyl acetate fraction. These results indicate that extract/fractions of Allium cepa peel can function as antioxidant in biological systems, particularly skin exposed to UV radiation by scavenging $^1O_2$ and other ROS, and protect cellular membranes against ROS, and possibly as antiaging agents. Allium cepa peel extract could be used as a new cosmeceutical for whitening and anti-wrinkle products.

A Novel Volumetric Method for Quantitation of Titanium Dioxide in Cosmetics (용량분석법을 이용한 화장품 중 티타늄옥사이드의 정량)

  • Kim, Young-So;Kim, Boo-Min;Park, Sang-Chul;Jeong, Hye-Jin;Chang, Ih-Seop
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.4 s.54
    • /
    • pp.289-293
    • /
    • 2005
  • Nowadays there are many sun protection cosmetics including organic or inorganic UV filter as an active ingredient. Chemically stable inorganic sunsEreen agents, usually metal oxides, we widely employed in high SPF products. Titanium dioxide is one of the most frequently used inorganic UV filters. It has been used as pigments for a long period of cosmetic history. With the development of micronization techniques, it becomes possible to incorporate titanium dioxide in sunscreen formulations without whitening effect and it becomes an important research topic. However, there are very few works related to quantitations of titanium dioxide in sunscreen products. In this research, we analyzed amounts of titanium dioxide in sunscreen cosmetics by adapting redof titration, reduction of Ti(IV) to Ti(III) and reoxidation to Ti(IV). After calcification of other organic ingredients of cosmetics, titanium dioxide is dissolved by hot sulfuric acid. The dissolved Ti(IV) is reduced to the Ti(III) by adding aluminum metals. The reduced Ti(III) is titrated against a standard oxidizing agent, Fe(III) (ammonium iron(III) sulfate), with potassium thiocyanate as an indicator In order to test accuracy and applicability of the proposed method, we analyzed the amounts of titanium dioxide in four types of sunscreen cosmetics, such as cream, make-up base, foundation and powder, after adding known amounts of titanium dioxide $(1{\sim}25w/w%)$. The percent recoveries of the titanium dioxide in four types of formulations were in the range between 96 and 105%. We also analyzed 7 commercial cosmetic products labeled titanium dioxide as an ingredient and compared the results with those of obtained from ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry), one of the most powerful atomic analysis techniques. The results showed that the titrated amounts were well coincided with the analyzed amounts of titanium dioxide by ICP-AES. Although instrumental analytical methods, ICP-MS (Inductively Coupled Plasma-Mass Spectrometry) and ICP-AES, are the best for the analysis of titanium, it is hard to adopt because of their high prices for small cosmetic companies. It was found that the volumetric method presented here gat e quantitative and reliable results with routine lab-wares and chemicals.