• Title/Summary/Keyword: White-state voltage

Search Result 17, Processing Time 0.028 seconds

Optimal Design of Optical Filter Recognizing Financial Account with Multiple Attribute Using Analytic Hierarchy Process (계층적 분석 과정을 이용한 다중 속성의 금융통장 인식용 광학 필터의 최적 설계)

  • Yu, Hyeung Keun;Lee, Kang Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.6
    • /
    • pp.407-416
    • /
    • 2014
  • Five factors are identified, which affect the performance of optical filter: 1) type of optical glass, 2) existence of Fe, 3) photo pic coating type, 4) coating form, and 5) coating thickness. If we consider all the levels of five factors, there are 360 possible candidates. We determined five evaluation criteria, which can be used to evaluate possible candidates. For the performance measures we selected white-state avearge voltage, black-state average voltage, and black-state error rate. And we added economic criterion and quality and maintenance criterion. Through the two-step statistical analysis of white-state avearge voltage, black-state average voltage, and black-state error rates, we selected final four candidates. Based on the five criteria we finally determined optimal optical filter using AHP.

Determination of Optimal Combination of Optical Filter for Recognizing Financial Account Using Statistical Analysis (통계적 분석에 의한 금융통장 인식용 광학필터 최적 조합 선정에 관한 연구)

  • Yu, Hyeung Keun;Lee, Kang Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.5
    • /
    • pp.328-341
    • /
    • 2014
  • The object of this paper is to develop optimal optical filter, which can be used to identify the financial account and read the information. The five factors which affect the performance of the optical filter are identified as optical glass type, existence of Fe, Photo pic coating type, and coating form. In this study we seek to determine the optimal combination for the best design of the optical filter. For each combination, the performances of optical filter are investigated using the proper experimental equipments and methods. White-state voltage, black-state voltage, and black-state error rate are used for the performance measures. Through the statistical analysis of the performance data collected, we have determined the optimal design of the optical filter.

High Performance Tandem OLEDs for Large Area Full Color AM Displays and Lighting Applications

  • Hatwar, T.K.;Spindler, J.P.;Slyke, S.A. Van
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1577-1582
    • /
    • 2006
  • Tandem OLED structures formed by connecting two or more low-voltage electroluminescent units (stacks) are effective for achieving high efficiency at low current density as well as long operational lifetime. We have fabricated white emitting tandem structures with two or three low-voltage white-emitting stacks using transparent organic "PN"-type connectors. Three- stack white tandem structures with efficiency greater than 24 cd/A at D65 and operational stability of about 110,000 h. (extrapolated) at $1000\;cd/m^2$ have been demonstrated. With a stacked structure, the power consumption for displays using an RGBW format can be reduced by 25% compared to previously described formulations. We have also fabricated advanced white tandem structures where the color gamut (NTSC x,y ratio) has been improved to greater than 70% using standard color filters. The white OLEDs can also be used to increase the colorrendering index CRI (>80%), an important consideration for solid-state lighting.

  • PDF

Conducted Noise Reduction in Three-Phase Boost Converter using Random (3상 승압형 컨버터에 의한 전도노이즈 감소)

  • Jung, Dong-Hyo;Kim, Sang-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2003.07e
    • /
    • pp.79-82
    • /
    • 2003
  • The switching-mode power converter has been widely used because of its features of high efficiency and small weight and size. In the switching-mode power converter, the output voltage is generally controlled by varying the duty ratio of main switch. When a converter operates in steady state, duty ratio of the converter is kept constant. So the power of switching noise is concentrated in specific frequencies. The more white noise is injected, the more conducted EMI is reduced. But output-voltage is not sufficiently regulated. This is the reason why carrier frequency selection topology is proposed. In the case of carrier frequency selection, output-voltage of steady state and transient state is fully regulated. Spectrum analysis is performed on the Phase current and the CM noise voltage. The former is measured with Current Probe and the latter is achieved with LISN, which are connected to the spectrum analyzer respectively.

  • PDF

A study on the Conducted Noise Reduction in Random PWM (Random PWM 기법을 이용한 전도노이즈 저감)

  • Jeong, Dong-Hyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.10b
    • /
    • pp.154-158
    • /
    • 2006
  • The switching-mode power converter has been widely used because of its features of high efficiency and small weight and size. These features are brought by the ON-OFF operation of semiconductor switching devices. However, this switching operation causes the surge and EMI(Electromagnetic Interference) which deteriorate the reliability of the converter themselves and entire electronic systems. This problem on the surge and noise is one of the most serious difficulties in AC-to-DC converter. Random Pulse Width Modulation (RPWM) is peformed by adding a random perturbation to switching instant while output-voltage regulation of converter is performed. RPWM method for reducing conducted EMI in single switch three phase discontinuous conduction mode boost converter is presented. The more white noise is injected, the more conducted EMI is reduced. But output-voltage is not sufficiently regulated. This is the reason why carrier frequency selection topology is proposed. In the case of carrier frequency selection, output-voltage of steady state and transient state is fully regulated. A RPWM control method was proposed in order to smooth the switching noise spectrum and reduce it's level. Experimental results are verified by converter operating at 300v/1kW with $5%{\sim}30%$ white noise input. Spectrum analysis is performed on the Phase current and the CM noise voltage. The former is measured with Current Probe and the latter is achieved with LISN, which are connected to the spectrum analyzer respectively.

  • PDF

A study on the Conducted Noise Reduction in Three-Phase Boost Converter using Random Pulse Width Modulation (Random PWM 기법을 이용한 3상 승압형 컨버터 전도노이즈 저감에 관한 연구)

  • Jung, Dong-Hyo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.3
    • /
    • pp.120-125
    • /
    • 2002
  • The switching-mode power converter has been widely used because of its features of high efficiency and small weight and size. These features are brought by the ON-OFF operation of semiconductor switching devices. However, this switching operation causes the surge and EMI(Electromagnetic Interference) which deteriorate the reliability of the converter themselves and entire electronic systems. This problem on the surge and noise is one of the most serious difficulties in AC-to-DC converter. In the switching-mode power converter, the output voltage is generally controlled by varying the duty ratio of main switch. When a converter operates in steady state, duty ratio of the converter is kept constant. So the power of switching noise is concentrated in specific frequencies. Generally, to reduce the EMI and improve the immunity of converter system, the switching frequency of converter needs to be properly modulated during a rectified line period instead of being kept constant. Random Pulse Width Modulation (RPWM) is performed by adding a random perturbation to switching instant while output-voltage regulation of converter is performed. RPWM method for reducing conducted EMI in single switch three phase discontinuous conduction mode boost converter is presented. The more white noise is injected, the more conducted EMI is reduced. But output-voltage is not sufficiently regulated. This is the reason why carrier frequency selection topology is proposed. In the case of carrier frequency selection, output-voltage of steady state and transient state is fully regulated. A RPWM control method was proposed in order to smooth the switching noise spectrum and reduce it's level. Experimental results are verified by converter operating at 300V/1kW with 5%~30% white noise input. Spectrum analysis is performed on the Phase current and the CM noise voltage. The former is measured with Current Probe and the latter is achieved with LISN, which are connected to the spectrum analyzer respectively.

Conducted Noise Reduction in Random Pulse Width Modulation (Random PWM 기법에 의한 전도노이즈)

  • Jung, Dong-Hyo;Kim, Sang-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.98-101
    • /
    • 2002
  • The switching-mode power converter has been widely used because of its features of high efficiency and small weight and size. These features are brought by the ON-OFF operation of semiconductor switching devices. However, this switching operation causes the surge and EMI(Electromagnetic Interference) which deteriorate the reliability of the converter themselves and entire electronic systems. This problem on the surge and noise is one of the most serious difficulties in AC-to-DC converter. In the case of carrier frequency selection, output-voltage of steady state and transient state is fully regulated. A RPWM control method was proposed in order to smooth the switching noise spectrum and reduce it's level. Experimental results are verified by converter operating at 300V/1kW with 5%${\sim}$30% white noise input. Spectrum analysis is performed on the Phase current and the CM noise voltage. The former is measured with Current Probe and the latter is achieved with USN. which are connected to the spectrum analyzer respectively.

  • PDF

Excimer-Based White Phosphorescent OLEDs with High Efficiency

  • Yang, Xiaohui;Wang, Zixing;Madakuni, Sijesh;Li, Jian;Jabbour, Ghassan E.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1520-1521
    • /
    • 2008
  • There are several ways to demonstrate white organic light emitting diodes (OLEDs) for displays and solid state lighting applications. Among these approaches are the stacked three primary or two complementary colors light-emitting layers, multiple-doped emissive layer, and excimer and exciplex emission [1-10]. We report on white phosphorescent excimer devices by using two light emitting materials based on platinum complexes. These devices showed a peak EQE of 15.7%, with an EQE of 14.5% (17 lm/W) at $500\;cd/m^2$, and a noticeable improvement in both the CIE coordinates (0.381, 0.401) and CRI (81). Devices with the structure ITO/PEDOT:PSS/TCTA (30 nm)/26 mCPy: 12% FPt (10 nm) /26 mCPy: 2% Pt-4 (15 nm)/BCP (40 nm)/CsF/Al [device 1], ITO/PEDOT:PSS/TCTA (30 nm)/26 mCPy: 2% Pt-4 (15 nm)/26 mCPy: 12% FPt (10 nm)/BCP (40 nm)/CsF/Al [device 2], and ITO/PEDOT:PSS/TCTA (30 nm)/26 mCPy: 2% Pt-4: 12% FPt (25 nm)/BCP (40 nm)/CsF/Al [device 3] were fabricated. In these cases, the emissive layer was either the double-layer of 26 mCPy:12% FPt and 15 nm 26 mCPy: 2% Pt-4, or the single layer of 26mCPy with simultaneous doping of Pt-4 and FPt. Device characterization indicates that the CIE coordinates/CRI of device 2 were (0.341, 0.394)/75, (0.295, 0.365)/70 at 5 V and 7 V, respectively. Significant change in EL spectra with the drive voltage was observed for device 2 indicating a shift in the carrier recombination zone, while relatively stable EL spectra was observed for device 1. This indicates a better charge trapping in Pt-4 doped layers [10]. On the other hand, device 3 having a single light-emitting layer (doped simultaneously) emitted a board spectrum combining emission from the Pt-4 monomer and FPt excimer. Moreover, excellent color stability independent of the drive voltage was observed in this case. The CIE coordinates/CRI at 4 V ($40\;cd/m^2$) and 7 V ($7100\;cd/m^2$) were (0.441, 0.421)/83 and (0.440, 0.427)/81, respectively. A balance in the EL spectra can be further obtained by lowering the doping ratio of FPt. In this regard, devices with FPt concentration of 8% (denoted as device 4) were fabricated and characterized. A shift in the CIE coordinates of device 4 from (0.441, 0.421) to (0.382, 0.401) was observed due to an increase in the emission intensity ratio of Pt-4 monomer to FPt excimer. It is worth noting that the CRI values remained above 80 for such device structure. Moreover, a noticeable stability in the EL spectra with respect to changing bias voltage was measured indicating a uniform region for exciton formation. A summary of device characteristics for all cases discussed above is shown in table 1. The forward light output in each case is approximately $500\;cd/m^2$. Other parameters listed are driving voltage (Bias), current density (J), external quantum efficiency (EQE), power efficiency (P.E.), luminous efficiency (cd/A), and CIE coordinates. To conclude, a highly efficient white phosphorescent excimer-based OLEDs made with two light-emitting platinum complexes and having a simple structure showed improved EL characteristics and color properties. The EQE of these devices at $500\;cd/m^2$ is 14.5% with a corresponding power efficiency of 17 lm/W, CIE coordinates of (0.382, 0.401), and CRI of 81.

  • PDF

All Non-Dopant RGB Composing White Organic Light-Emitting Diodes

  • Yeh, Shi-Jay;Chen, Hung-Yang;Wu, Min-Fei;Chan, Li-Hsin;Chiang, Chih-Long;Yeh, Hsiu-Chih;Chen, Chin-Ti;Lee, Jiun-Haw
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1583-1586
    • /
    • 2006
  • All non-dopant white organic light-emitting diodes (WOLEDs) have been realized by using solid state highly fluorescent red bis(4-(N-(1- naphthyl)phenylamino)phenyl)fumaronitrile (NPAFN) and amorphous bipolar blue light-emitting 2-(4- diphenylamino)phenyl-5-(4-triphenylsilyl)phenyl- 1,3,4-oxadiazole (TPAOXD), together with well known green fluorophore tris(8- hydroxyquinolinato)aluminum $(Alq_3)$. The fabrication of multilayer WOLEDs did not involve the hard-tocontrol doping process. Two WOLEDs, Device I and II, different in layer thickness of $Alq_3$, 30 and 15 nm, respectively, emitted strong electroluminescence (EL) as intense as $25,000\;cd/m^2$. For practical solid state lighting application, EL intensity exceeding $1,000\;cd/m^2$ was achieved at current density of $18-19\;mA/cm^2$ or driving voltage of 6.5-8 V and the devices exhibited external quantum efficiency $({\eta}_{ext})$ of $2.6{\sim}2.9%$ corresponding to power efficiency $({\eta}_P)$ of $2.1{\sim}2.3\;lm/W$ at the required brightness.

  • PDF

Characteristics of LB Layer for White Light Organic Electroluminescent Device (백색 유기 EL 소자의 발광층용 LB막 특성)

  • Kim, Ju-Seung;Gu, Hal-Bon;Lee, Kyung-Sup;Song, Min-Jong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.90-93
    • /
    • 2002
  • In the surface pressure-area isotherms of mixed monolayers, mixtures containing as much as 30 mol% of AA form stable condensed monolayer while the monolayer without AA is in the expanded state because PVK take on 3D collapsed. All of the mixed monolayers with 0, 10, 20 and 30 mol% of AA could be readily transferred onto ITO substrate at 16, 17, 24 and 26 mN/m, respectively. The monolayer containing 30 mol% of AA, however, showed a roughness value of 28A and became homogeneous decreasing with the phase separation. We fabricated organic EL device of ITO/CuPc/MEL/BBOT/iLiF/Al using mixed monolayer of 13, 19 and 25 layer deposited by LB method as a emitting layer. In the voltage-current characteristics of EL device, current density was much smaller than that of the spin-coated devices. It may due to the large contact resistance existed at the interface of LB layer/organic layer inhibit carrier injection to the emitting layer. EL spectra of device showed peaks at 450. 470, 505, 555 and 650 nm and the white light emission indicate the CIE coordinate x=0.306, y=0.353.

  • PDF