• Title/Summary/Keyword: White rot disease

Search Result 142, Processing Time 0.022 seconds

Development of a 15-day Interval Spraying Program for Controlling Major Apple Diseases

  • Lee, Dong-Hyuck;Kim, Dae-Hee;Shin, Ho-Cheol;Uhm, Jae-Youl
    • The Plant Pathology Journal
    • /
    • v.24 no.4
    • /
    • pp.439-446
    • /
    • 2008
  • A fungicidal spray program for effective control of three major apple diseases in Korea (white rot, bitter rot, and Marssonina blotch) was developed. This was based on our previous studies showing that application of ergosterol biosynthesis inhibitors (EBIs) in early or mid-August can eradicate white rot infection in fruit and that some protective fungicides show after-infection activity against white rot. The basic spray program focused on control of white rot, the main target disease, and the fungicides were sprayed at 15-day intervals from petal fall to late August using fungicides that show after-infection and EBI activity. The basic spray program was modified over 4 successive years to improve control efficacy against bitter rot and Marssonina blotch, which sometimes cause as much damage as white rot. Modifications to the regime were made every year by replacing one fungicide in the basic program at a specific spraying time. Substitution of only one fungicide in the spray program, even early in the growing season, greatly influenced the final disease incidence at harvest. Applying this principle, a moderately efficient spray program for cv. Fuji that increased the spray interval from 10 to 15 days and thus reduced the number of sprays required per crop season was developed.

White Rot of Korean Wild Chive Caused by Stromatinia cepivora

  • Wan-Gyu Kim;Gyo-Bin Lee;Hong-Sik Shim;Weon-Dae Cho
    • Research in Plant Disease
    • /
    • v.29 no.2
    • /
    • pp.184-187
    • /
    • 2023
  • In May 2020, we surveyed disease occurrence on vegetables grown in Seosan area, Korea. During the disease survey, white rot symptoms were observed in Korean wild chive (Allium monanthum) plants growing in fields. The symptoms occurred mainly in the seed bulb-producing fields of the crop. The above ground parts of the diseased plants displayed premature yellowing and dying of older leaves and stunting of the plants. The bulbs and roots of the diseased plants turned black and rotted. The disease occurred in a range of 1-60% in four of the eight fields surveyed. Three isolates of Sclerotium sp. were obtained from the bulb lesions of diseased plants. All isolates were identified as Stromatinia cepivora based on the morphological characteristics and phylogenetic analysis. Pathogenicity of the isolates on Korean wild chive was confirmed by artificial inoculation test. The lesions induced by the inoculation test were similar to those observed in the investigated fields. This is the first report of S. cepivora causing white rot in Korean wild chive.

After-infection Activity of Protective Fungicides against Apple White Rot

  • Lee, Dong-Hyuk;Kim, Dae-Hee;Woo, Hyun;Uhm, Jae-Youl
    • The Plant Pathology Journal
    • /
    • v.23 no.3
    • /
    • pp.166-173
    • /
    • 2007
  • In a trial to select suitable fungicides for developing a spray program that can control apple white rot effectively, after-infection activities in some protective fungicides were detected. Six fungicides, mancozeb, propineb, benomyl, folpet, azoxystrobin and iminoctadine-triacetate, which had been extensively used in apple orchards, were sprayed on 12-year-old apple trees (cv. Fuji) at 15-day intervals from late May to late July. Disease incidences and infection frequencies of the fruit bagged just before and soon after each spray were examined. When the infection frequency or disease incidence of the fruit bagged after each spraying of fungicide was significantly lower than those of the fruit bagged before spraying, the fungicides appeared to confer after-infection activity. The six fungicides showed diverse activities on white rot: folpet showed after-infection activity on disease development, iminoctadine-triacetate showed after-infection activity on infection, azoxystrobin showed after-infection activity on disease development and infection, and mancozeb, propineb and benomyl showed no distinct activity. The activity of a fungicide became much higher when it was sprayed alternately with other fungicide rather than successive spraying of the same fungicide. Analysis of the properties of these protective fungicides could lead to the development of a highly effective spray program against white rot.

Identification of Differentially Up-regulated Genes in Apple with White Rot Disease

  • Kang, Yeo-Jin;Lee, Young Koung;Kim, In-Jung
    • The Plant Pathology Journal
    • /
    • v.35 no.5
    • /
    • pp.530-537
    • /
    • 2019
  • Fuji, a major apple cultivar in Korea, is susceptible to white rot. Apple white rot disease appears on the stem and fruit; the development of which deteriorates fruit quality, resulting in decreases in farmers' income. Thus, it is necessary to characterize molecular markers related to apple white rot resistance. In this study, we screened for differentially expressed genes between uninfected apple fruits and those infected with Botryosphaeria dothidea, the fungal pathogen that causes white rot. Antimicrobial tests suggest that a gene expression involved in the synthesis of the substance inhibiting the growth of B. dothidea in apples was induced by pathogen infection. We identified seven transcripts induced by the infection. The seven transcripts were homologous to genes encoding a flavonoid glucosyltransferase, a metallothionein-like protein, a senescence-induced protein, a chitinase, a wound-induced protein, and proteins of unknown function. These genes have functions related to responses to environmental stresses, including pathogen infections. Our results can be useful for the development of molecular markers for early detection of the disease or for use in breeding white rotresistant cultivars.

First Report of Sclerotinia White Rot Caused by Sclerotinia nivalis on Panax ginseng in Korea

  • Cho, Hye Sun;Shin, Jeong-Sup;Kim, Jae-Hyun;Hong, Tae-Kyun;Cho, Dae-Hui;Kang, Je Yong
    • Research in Plant Disease
    • /
    • v.19 no.1
    • /
    • pp.49-54
    • /
    • 2013
  • Sclerotinia white rot disease was observed on 5 and 6-year-old ginseng (Panax ginseng) roots in Hongchun, Cheorwon, and Yanggu, Gangwon Province, Korea from 2006 to 2010. Symptoms included a brownish watery soft rot of the roots, and black sclerotia were often found on the rotten roots. The causal agent of the disease was identified as Sclerotinia nivalis based on cultural characteristics and sequence analyses of the internal transcribed spacer region of rDNA and ${\beta}$-tubulin gene with 100% sequence similarity. Pathogenicity tests were performed on 2-year-old ginseng roots with mycelium plugs without wounds. A watery soft rot of the roots and black sclerotia were observed 10 days after inoculation. These symptoms were identical to those observed on naturally infected roots. The same fungus was re-isolated from the lesions induced by artificial inoculation. This is the first report of sclerotinia white rot caused by S. nivalis on P. ginseng in Korea.

Biological Control of White Rot in Garlic Using Burkholderia pyrrocinia CAB08106-4 (Burkholderia pyrrocinia CAB08106-4 균주를 이용한 마늘 흑색썩음균핵병의 생물학적 방제)

  • Han, Kwang Seop;Kim, Buyng Ryun;Kim, Jong Tae;Hahm, Soo Sang;Hong, Ki Heung;Chung, Chang Kook;Nam, Yun Gyu;Yu, Seung Hun;Choi, Jae Eul
    • Research in Plant Disease
    • /
    • v.19 no.1
    • /
    • pp.21-24
    • /
    • 2013
  • White rot caused by Sclerotium cepivorum was reported to be severe soil-born disease on garlic. Disease progress of white rot of garlic (Allium sativum L.) was investigated during the growing season of 2009 to 2011 at Taean and Seosan areas. The white rot disease on bulb began to occur from late April and peaked in late May. The antifungal bacteria, Burkholderia pyrrocinia CAB08106-4 was tested in field bioassay for suppression of white rot disease. As a result of the nucleotide sequence of the gene 16S rRNA, CAB008106-4 strain used in this study has been identified as B. pyrrocinia. B. pyrrocinia CAB080106-4 isolate suppressed the white rot with 69.6% control efficacy in field test. These results suggested that B. pyrrocinia CAB08106-4 isolate could be an effective biological control agent against white rot of garlic.

Incidence of Diseases in Codonopsis lanceolata with Different Cultivation Method (재배양식에 따른 더덕 병해 발생양상)

  • 김주희;최정식
    • Korean Journal Plant Pathology
    • /
    • v.14 no.6
    • /
    • pp.676-681
    • /
    • 1998
  • Disease incidence of Codonopsis lanceolata was surveyed at the major cultivating fields in Chonbuk province in 1996 to 1997. The main diseases of Codonopsis lanceolata were ovserved as leaf spot caused by Septoria codonopsis, anthracnose by Glomerella cingulata, brown leaf spot by Cercospora sp., rust by Coleosporium koreanum, powdery mildew by Erysiphe sp., Fusarium wilt caused by Fusarium oxyporum, and white root rot by Sclerotium rolfsii. Anthracnose, leaf spot and brown leaf spot occurred severely on leaves from early July to late August. They were caused early fallen leaves. Fusarium wilt and white root rot occurred severely on stem and below the soil line in late August. They resulted in withering to death or chlorosis and fallen of leaves. Disease incidence of Codonopsis lanceolata was also substantially different in occurrence with a method of cultivation in late growth stage. Fusarium wilt and white root rot were more severe with a method of no support cultivation than those with a method of support cultivation with a stick. Fusarium wilt occurred 48.8% in a method of no support cultivation but 3.1% in a method of support cultivation with a stick. And white root rot occurred 18.9% in a method of no support cultivation but 0.3% in a method of no support cultivation with a stick. Thus, it proved that soil-borne diseases could be controlled support cultivation with a stick.

  • PDF

Various Cultural Factors Associated with Disease Development of Garlic White Rot Caused by Two Species of Sclerotium (마늘 흑색썩음균핵병 발생에 관여하는 여러가지 경종적 요인)

  • Kim, Yong-Ki;Kwon, Mi-Kyung;Shim, Hong-Sik;Kim, Tack-Soo;Yeh, Wan-Hae;Cho, Weon-Dae;Choi, In-Hu;Lee, Seong-Chan;Ko, Sug-Ju;Lee, Yong-Hwan;Lee, Chan-Jung
    • Research in Plant Disease
    • /
    • v.11 no.1
    • /
    • pp.28-34
    • /
    • 2005
  • This study was conducted to investigate the control possibility of garlic white rot causing severe yield losses of Allium species and cultivars using cultural practices such as optimal sowing date and burial depth, and lime application. Inoculum density in infested field soil was investigated at different soil depth, and that on the diseased plant debris was done. Inoculum density and recovery ratio of white rot pathogen of garlic was highly different between two species of Sclerotium cepivorum forming comparatively small sclerotia and Sclerotium sp. forming comparatively large ones. It was confirmed that S. cepivorum formed more sclerotia on bulbs of garlic than S. sp., and sclerotial recovery of S. cepivorum was higher than that of S. sp. Inoculum density of white rot pathogen in the infested field at garlic seeding period ranged from one to thirteen sclerotia per 30 g soil. Inoculum density of white rot pathogen decreased remarkably with increasing soil depth and above 95% of sclerotia were distributed within 5 cm of soil depth. Disease severity of white rot was higher on slightly planted garlics than deeply-planted ones. Garlic seed bulbs infected by white rot pathogens were confirmed to be one of main inoculum sources of white rot in the field and the disease incidences caused by garlic seed transmission showed big differences among garlic varieties. When nine garlic varieties harvested from infested plots were sown in the field, highly susceptible varieties, ‘Wando’, ‘Daeseo’, ‘Namdo’ and ‘Kodang’ showed high disease incidences, whereas other five varieties were not infected at all. It was confirmed that white rot occurred higher on early-sown garlics, before middle October, than on late-sown ones, after late October. Meanwhile, increasing application rate of lime ranged from 100 to 300 g reduced disease severity of white rot.

Collar Rot of Safflower Caused by Sclerotium rolfsii (Sclerotium rolfsii에의한 잇꽃 흰비단병)

  • 권진혁
    • Plant Disease and Agriculture
    • /
    • v.5 no.2
    • /
    • pp.119-121
    • /
    • 1999
  • A destructive collar rot of safflower occurred severely research farm of at Kyongsangnam-do Agricultural Research and Extension Services in 1999. Incidence of the disease at 3 fields in Chinju was ranged from 21.6 to 34.2% Upper parts of infected stems were mostly blighted and white mycelia were found on the lesions. The same fungus was isolated consistently from the infected tissues and confirmed its pathogenecity to safflower. The causal fungus of collar rot disease was identified as Sclerotium rolfsii by the examination of colony type sclerotium formation and pathogenicity test. This fungus also causes stem rot crown rot wilt or blight on the safflower. This is the first report on the collar rot of safflower caused by Sclerotium rolfsii in Korea.

  • PDF

Biological Control of Soil-borne Diseases with Antagonistic Bacteria

  • Kim, Byung-Ryun;Hahm, Soo-Sang;Han, Kwang-Seop;Kim, Jong-Tae;Park, In-Hee
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.25-25
    • /
    • 2016
  • Biological control has many advantages as a disease control method, particularly when compared with pesticides. One of the most important benefits is that biological control is an environmental friendly method and does not introduce pollutants into the environment. Another great advantage of this method is its selectivity. Selectivity is the important factor regarding the balance of agricultural ecosystems because a great damage to non target species can lead to the restriction of natural enemies' populations. The objective of this research was to evaluate the effects of several different bacterial isolates on the efficacy of biological control of soil borne diseases. White rot caused by Sclerotium cepivorum was reported to be severe disease of garlic and chive. The antifungal bacteria Burkholderia pyrrocinia CAB08106-4 was tested in field bioassays for its ability to suppress white rot disease. In field tests, B. pyrrocinia CAB08106-4 isolates suppressed white rot in garlic and chive, with the average control efficacies of 69.6% and 58.9%, respectively. In addition, when a culture filtrate of B. pyrrocinia CAB08106-4 was sprayed onto wounded garlic bulbs after inoculation with a Penicillium hirstum spore suspension in a cold storage room ($-2^{\circ}C$), blue mold disease on garlic bulbs was suppressed, with a control efficacy of 79.2%. These results suggested that B. pyrrocinia CAB08106-4 isolates could be used as effective biological control agents against both soil-borne and post-harvest diseases of Liliaceae. Chinese cabbage clubroot caused by Plasmodiophora brassicae was found to be highly virulent in Chinese cabbage, turnips, and cabbage. In this study, the endophytic bacterium Flavobacterium hercynium EPB-C313, which was isolated from Chinese cabbage tissues, was investigated for its antimicrobial activity by inactivating resting spores and its control effects on clubroot disease using bioassays. The bacterial cells, culture solutions, and culture filtrates of F. hercynium EPB-C313 inactivated the resting spores of P. brassicae, with the control efficacies of 90.4%, 36.8%, and 26.0%, respectively. Complex treatments greatly enhanced the control efficacy by 63.7% in a field of 50% diseased plants by incorporating pellets containing organic matter and F. hercynium EPB-C313 in soil, drenching seedlings with a culture solution of F. hercynium EPB-C313, and drenching soil for 10 days after planting. Soft rot caused by Pectobacterium carotovorum subsp. carotovorum was reported to be severe disease to Chinese cabbage in spring seasons. The antifungal bacterium, Bacillus sp. CAB12243-2 suppresses the soft rot disease on Chinese cabbage with 73.0% control efficacy in greenhouse assay. This isolate will increase the utilization of rhizobacteria species as biocontrol agents against soft rot disease of vegetable crops. Sclerotinia rot caused by Sclerotinia sclerotiorum has been reported on lettuce during winter. An antifungal isolate of Pseudomonas corrugata CAB07024-3 was tested in field bioassays for its ability to suppress scleritinia rot. This antagonistic microorganism showed four-year average effects of 63.1% of the control in the same field. Furthermore, P. corrugata CAB07024-3 has a wide antifungal spectrum against plant pathogens, including Sclerotinia sclerotiorum, Sclerotium cepivorum, Botrytis cinerea, Colletotrichum gloeosporioides, Phytophotra capsici, and Pythium myriotylum.

  • PDF