• Title/Summary/Keyword: Whipping response

Search Result 22, Processing Time 0.018 seconds

A comparison study of water impact and water exit models

  • Korobkin, Alexander;Khabakhpasheva, Tatyana;Malenica, Sime;Kim, Yonghwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.1182-1196
    • /
    • 2014
  • In problems of global hydroelastic ship response in severe seas including the whipping problem, we need to know the hydrodynamic forces acting on the ship hull during almost arbitrary ship motions. In terms of ship sections, some of them can enter water but others exit from water. Computations of nonlinear free surface flows, pressure distributions and hydrodynamic forces in parallel with the computations of the ship motions including elastic vibrations of the ship hull are time consuming and are suitable only for research purposes but not for practical calculations. In this paper, it is shown that the slamming forces can be decomposed in two components within three semi-analytical models of water entry. Only heave motion is considered. The first component is proportional to the entry speed squared and the second one to the body acceleration. The coefficients in these two components are functions of the penetration depth only and can be precomputed for given shape of the body. During the exit stage the hydrodynamic force is proportional to the acceleration of the body and independent of the body shape for bodies with small deadrise angles.

Process Optimization for Processing of Oyster Crassostrea gigas Gratin with Cream Sauce (크림 굴(Crassostrea gigas) 그라탕의 제조공정 최적화)

  • Lee, Chang Yong;Kim, Ye Youl;Sohn, Suk Kyung;Lee, Seok Min;Oh, Seon Hwa;Kim, Jin-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.2
    • /
    • pp.102-110
    • /
    • 2022
  • This study was conducted to optimize the processing process for the oyster Crassostrea gigas gratin with cream sauce (OG-CS). The optimum concentration of added milk for oyster extract with milk (OE-M) was 35.0% based on the frozen-boiled oyster (F-BO), as suggested by the results of sensory evaluation. Response surface methodology was performed with whipping cream (WC)/[OE-M+mixed powder (garlic powder:onion powder=1:1) (MP)] (X1) and OE-M/MP (X2) as independent variables and viscosity (Y1), amino acid nitrogen (Y2), and overall acceptance for sensory evaluation (Y3) as dependent variables. The optimal proportions were 74.55% of WC, 20.25% of OE-M, and 5.2% of MP, and the predicted multiple response optimal values for the dependent variables were 3,735.6 cP of Y1, 197.0 mg/100 g of Y2, and 6.2 score of Y3. Under optimal conditions, the experimental values for Y1, Y2, and Y3 were 3,711.9±30.0 cP, 198.1±1.9 mg/100 g, and 6.3±0.5 score, respectively, which were not significantly different from the predicted values (P>0.05). Further, the results of sensory evaluation suggested that the optimum concentration of macaroni:cheese (1:2) to be 46.2% based on the F-BO. The OG-CS prepared under these optimal conditions was superior to the commercial seafood gratin in overall acceptance.